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Abstract

Let Fn
p be the n-dimensional vector space over Fp. The graph GF = {(x, F (x)) : x ∈ Fn

p} of
a vectorial function F : Fn

p → Fm
p can have interesting combinatorial properties depending on

varying cryptographic conditions on F . A vectorial Boolean function F : Fn
2 → Fn

2 is almost
perfect nonlinear (APN) if there are at most 2 solutions to the equation F (x + a) + F (x) = b
for all a, b ∈ Fn

2 where a ̸= 0. Equivalently, F is APN if and only if GF is a Sidon set, that is,
a set in Fn

2 where no four distinct points sum to zero. In this paper, we classify APN functions
and important subclasses of APN functions in graph theoretical terms using the Kneser graph
of all translations of GF . We also study the properties of GF as a Sidon set. In particular,
we introduce the notion of uniform exclude distributions, and we study APN functions whose
graphs have uniform exclude distributions.
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1
Introduction

The study of Sidon sets goes back to Simon Sidon, who originally started studying this concept

in the early 20th century. Sidon sets are well-known in number theory and have many interesting

properties. In this thesis, we will study Sidon sets in Fn
2 (which can also be thought of as Zn

2 ). A

Sidon set in Fn
2 is a set such that no four distinct elements have a trivial sum. A very well-known

open problem is to find the largest Sidon set in Fn
2 for fixed n, and the exact answer to this

problem is only known for n ≤ 10.

Closely related to Sidon sets are almost perfect nonlinear (APN) functions. APN functions

are those vectorial Boolean functions F : Fn
2 → Fn

2 such that the equation F (x+ a) + F (x) = b

has either 0 or 2 solutions for all a, b ∈ Fn
2 where a ̸= 0. APN functions are an important

notion in cryptography as they form the class of functions that are optimally resistant to dif-

ferential cryptanalysis when used as an S-box in block ciphers (an important notion in sym-

metric cryptography). A key fact that we will reference throughout this work is that the graph

GF = {(x, F (x)) : x ∈ Fn
2} of a vectorial Boolean function F : Fn

2 → Fn
2 is a Sidon set if and only

if F is APN. This fact draws a direct connection between symmetric cryptography and additive

combinatorics.

Sidon sets can be used to model the card game EvenQuads [47], which is a SET-like card

game. Similarly, so-called cap-sets can be used to model the card game SET. Cap-sets are those

1



2 INTRODUCTION

sets in Fn
3 where no three distinct points sum to zero, highlighting the analogy between cap sets

and Sidon sets. The standard SET card deck is modeled by F4
3, and it turns out that the largest

size of a cap set in F4
3 is 20.

One fact that motivated some of this work is that there exist four distinct cap sets in F4
3 of

size 20 (the largest size possible), which form a partition of F4
3 minus a single point. Given that

cap sets and Sidon sets are analogous, it would be interesting to similar partitions in Fn
2 . While

cap sets and Sidon sets are similar in their definition, the mathematics of both vary significantly.

Nonetheless, in Chapter 3, we provide constructions of partitions of Fn
2 × Fn

2 consisting of 2n

maximal Sidon sets that are the graphs of APN functions. In Chapter 3, we use APN functions

and their graphs in order to construct partitions of (Fn
2 )

2 into Sidon sets. In particular, we can

use certain types of APN functions to construct partitions of (Fn
2 )

2 into 2n distinct, pairwise

disjoint, maximal Sidon sets for all n, see Theorem 3.1.2. In order to construct these partitions,

we translate GF .

By studying the collection of all translations of the graph of a vectorial function F : Fn
p → Fm

p ,

where p is some positive prime, we are naturally led to studying exactly when two translations

of GF are disjoint. In fact, the intersections of two such translations are closely related to

the differential uniformity of F . In Chapter 4, we study the Kneser graph of all translations

of the graph of a vectorial function, and we provide graph theoretical classifications of APN

and AB functions in Theorem 4.4.1 and Theorem 4.4.7, respectively. We classify AB functions

by using strongly regular graphs, and we do this in Theorem 4.2.3 by providing a new direct

proof that the Cayley graph of any bent Boolean function f : Fn
2 → F2 is strongly regular with

λ = µ = wt(f)− 2n−2, and we also prove the converse of this statement.

In Chapter 5, we discuss the exclude distribution of a Sidon set in Fn
2 . The exclude points of a

Sidon set S are those points such that if any of them were to be included in S, the resulting set

would not be Sidon. Each exclude point naturally has an exclude multiplicity, and the exclude

distribution of S is the function that takes any point in Fn
2 \ S to its exclude multiplicity. We

study in particular the exclude distributions of the graphs of APN functions. It is conjectured
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that the graph of any APN function F : Fn
2 → Fn

2 is maximal [17] [12], that is, its exclude

distribution always takes non-zero value. Little progress has been made on this conjecture, and

it remains to be a very interesting open problem that has led to many fruitful discoveries.

We will discuss how a bound on the difference between the minimal and maximal values that

the exclude distribution of GF takes, where F : Fn
2 → Fn

2 is APN, can imply that GF is maximal.

In particular, a corollary to Theorem 5.3.10 is that if the difference between the minimal and

maximal values that the exclude distribution of GF takes is bounded by 2n−2
6 , then GF must be

a maximal Sidon set. Interestingly, almost bent (AB) functions (an important subclass of APN

functions) are those functions F : Fn
2 → Fn

2 whose graph has an exclude distribution constant at

2n−2
6 .

Also in Chapter 5, we the notion of uniform exclude distributions. In short, an exclude

distribution of a Sidon set S ⊆ Fn
2 is uniform on an equally-sized partition of some subset of

Fn
2 \S if it locally takes the same values at any element of the partition. We are interested in the

case of when F : Fn
2 → Fn

2 is an APN function such that GF has an exclude distribution that is

uniform on an equally-sized partition of (Fn
2 )

2\GF . We can partition (Fn
2 )

2\GF into the collection

Q(Fn
2 , F ) = {{x} × (Fn

2 \ {F (x)}) : x ∈ Fn
2} which consists of sets that are n-dimensional affine

subspaces (or flats) with a unique point, belonging to GF , removed. That is, Q(Fn
2 , F ) is the

collection of sets where given any set Q ∈ Q(Fn
2 , F ), all of the points in Q have their first

coordinate as some fixed value x, and their second coordinate ranges across all values except

F (x). The significance of finding APN functions F whose graphs admit exclude distributions

that are uniform onQ(Fn
2 , F ) is that we capture all of the information of the 3-sums of GF by only

considering the exclude distribution at a small collection of points. ,AB functions satisfy this

by the van Dam, Fon-Der-Flaass characterization of AB functions [45]. We conclude Chapter 5

by using a of Carlet from Theorem 5.3.23 to prove if F : Fn
2 → Fn

2 is an APN plateaued function

whose component functions are all unbalanced, then the exclude distribution of GF is uniform

on Q(Fn
2 , F ) of (Fn

2 )
2.
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2
Background and survey

2.1 Vectorial functions and differential uniformity

For p prime, let Fpn be the finite field containing pn elements. Denote by Fn
p the n-dimensional

vector space over Fp. A vectorial function is a function F : Fn
p → Fm

p . If p = 2, then we say

that F is a vectorial Boolean function. The graph GF of a vectorial function F is the set{
(x, F (x)) : x ∈ Fn

p

}
. Since both Fn

p and Fpn can be considered as n-dimensional vector spaces,

we will sometimes identify Fn
p with Fpn in order to use its multiplicative structure. We also

denote S \ {0} as S∗ for any set S.

Example 2.1.1. Consider the vectorial Boolean function F : F2 → F2 defined by F (x) = x for

all x ∈ F2. Then the graph of F is GF = {(0, 0), (1, 1)}.

For any a ̸= 0 in Fn
p , the function DaF : Fn

p → Fm
p defined by DaF (x) = F (x + a) − F (x) is

the derivative of F in the direction of a. For any a ∈ (Fn
p )

∗ and b ∈ Fm
p , we denote the

number of solutions to DaF (x) = b as δF (a, b). The set of all possible distinct values of δF (a, b)

is called the differential spectrum of F , denoted as ∆F . Hence,

∆F =
{
δF (a, b) : a ∈ (Fn

p )
∗, b ∈ Fm

p

}
.

5



6 CHAPTER 2. BACKGROUND AND SURVEY

Let δ be the maximal value in ∆F . Then, we call δ the differential uniformity of F , and we

say F is differentially δ-uniform. Hence, if F is differentially δ-uniform, then DaF (x) = b

has at most δ solutions for all a ∈ (Fn
p )

∗ and all b ∈ Fm
p .

Example 2.1.2. We will show that the function F : F2n → F2n defined by F (x) = x3 for all

x ∈ F2n is differentially 2-uniform. Let a, b ∈ F2n such that a ̸= 0. Observe that since F2n is of

characteristic 2, we have

DaF (x) = (x+ a)3 − x3

= (x+ a)3 + x3

= a3 + 3a2x+ 3ax2 + 2x3

= a3 + a2x+ ax2.

Therefore, δF (a, b) is equal to the number of solutions to a3 + a2x + ax2 = b, or equivalently,

x2 + ax + a2 = b
a . Hence, δF (a, b) ≤ 2, as these equations are quadratic in x. Also, it is clear

that ∆F ̸= 0, and since a solution x0 to DaF (x) = b implies x0 + a is a solution, we know that

F cannot be differentially 1-uniform. Therefore, F is differentially 2-uniform.

In general, the inequality δ ≥ pm−n always holds for any vectorial function F : Fn
p → Fm

p [6],

and in the case that the equality δ = pm−n holds, we call F perfect nonlinear (PN). PN

functions are those that are optimally resistant to a so-called differential attack (see [5], [42]).

Cryptographers are particularly interested in the Boolean case, p = 2. However, as mentioned

in [6], if p = 2, then PN functions only exist when 2m ≤ n and n is even. We easily verify the

case n = m and p = 2 because if x0 is a solution to F (x+ a) + F (x) = b, then x0 + a is also a

solution.

Definition 2.1.3. Let F : Fn
2 → Fn

2 be a vectorial Boolean function. We call F almost perfect

nonlinear (APN) if it is differentially 2-uniform.

Since we already proved in Example 2.1.2 that the function x 7→ x3 over F2n is differentially

2-uniform, we have our first example of an APN function. APN functions are interesting, not
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just due to their cryptographic characteristics but also because of their connections to additive

combinatorics. In particular, APN functions are also those functions from Fn
2 to itself whose

graph is a Sidon set, which we define now.

Definition 2.1.4. Let S ⊆ Fn
2 be a set. If no four distinct points in S sum to zero, we call S a

Sidon set.

This connection between APN functions and Sidon sets holds because a function F : Fn
2 → Fn

2

is APN if and only if the system of equations{
x+ y + z + w = 0

F (x) + F (y) + F (z) + F (w) = 0

only has a solution (x, y, z, w) if x, y, z, w are not pairwise distinct [17]. Sidon sets are an

important notion in combinatorics, and the connections between APN functions and Sidon sets

are plentiful with many open problems (c.f. [17], [39], [43], [44], [19]).

Additionally, a function that we will use throughout this paper is the Boolean function

γF : Fn
p × Fm

p → F2 defined by

γF (a, b) =

{
1 if a ̸= 0 and δF (a, b) ̸= 0

0 otherwise.

We make the following observation.

Remark 2.1.5. Let F : Fn
2 → Fn

2 be a function. Then F is APN if and only if 2γF (a, b) = δF (a, b)

for all a, b ∈ Fn
2 such that a ̸= 0.

2.1.1 Notions of equivalence of vectorial functions

There are a few important equivalence relations of vectorial functions that have been introduced

over the last few decades; and in this project, we may refer to the following three.

Definition 2.1.6. [9] Let F and F ′ be functions from Fn
p to Fm

p . We say that F and F ′ are

1. affine equivalent if there exists affine permutations A1 : Fm
p → Fm

p and A2 : Fn
p → Fn

p

such that F ′ = A1 ◦ F ◦A2;
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2. extended affine equivalent (EA-equivalent) if there exist affine maps A,A1, A2 from Fn
p

to itself such that F ′ = A1 ◦ F ◦A2 +A and where A1 and A2 are permutations;

3. Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if there exists an affine permu-

tation L of (Fn
p )

2 such that L(GF ) = GF ′ .

For each of the above equivalence relations, differential uniformity is an invariant. As nomen-

clature would suggest, affine equivalence is a particular case of EA-equivalence. Furthermore, it

was shown in [18] that EA-equivalence is a particular case of CCZ-equivalence.

2.2 APN, AB, and crooked functions

In this section, we only consider the Boolean case, i.e. p = 2. As mentioned in Section 2.1, a

function with the lowest possible differential uniformity is optimally resistant to a so-called differ-

ential attack. However, there is another type of attack, namely a linear attack (first introduced

in [36]), which is least effective if the nonlinearity of F : Fn
2 → Fm

2 is high.

The nonlinearity NL(f) of a Boolean function f : Fn
2 → F2 is the minimum Hamming

distance between f and all affine Boolean functions. Recall that Hamming distance d(g, h) of

two functions g, h : X → Y is the cardinality of {x ∈ X : g(x) ̸= h(x)} where X and Y are finite

sets. we call b · F a component function of F : Fn
2 → Fm

2 . We then define the nonlinearity

of F : Fn
2 → Fm

2 to be

NL(F ) = min
b∈Fm

2
b ̸=0

NL(b · F ).

Nonlinearity is invariant under CCZ-equivalence, meaning any two CCZ-equivalent vectorial

Boolean functions have equal nonlinearity. One may correctly assume that the nonlinearity of

a linear vectorial Boolean function is 0.

Remark 2.2.1. Consider some linear function L : Fn
2 → Fm

2 , and let b ∈ Fm
2 such that all entries

of b are equal to 1. Let ω : Fm
2 → F2 be the function defined by

ω(x) =

{
0 if x has an even number of non-zero entries

1 otherwise.
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It is straightforward that b · F = ω ◦ F . Furthermore, it is also easily observed that ω is linear,

so ω ◦ F = b · F is linear. Therefore, NL(b · F ) = 0, implying NL(F ) = 0.

The function trmn : F2n → F2m defined by trmn (x) =
∑n−1

i=0 x2
mi

is called the trace function.

If m = 1, then we denote tr1n as trn. Note that trn is an inner product over F2n .

For a Boolean function f : Fn
2 → F2, the Walsh transform of f is the function Wf : Fn

2 → Z

defined by

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x,

where x · y is the standard inner product over Fn
2 . In the case where we are considering Fn

2 as

F2n , we use the trace inner product trn instead, that is, x · y = trn(xy).

On the other hand, for a vectorial Boolean function F : Fn
2 → Fm

2 , we define the Walsh

transform of F to be the function WF : Fn
2 × Fm

2 → Z defined by

WF (a, b) =
∑
x∈Fn

2

(−1)a·x+b·F (x).

Note that the formulae for the Walsh transform of a Boolean function and the formula for the

Walsh transform of a vectorial Boolean function agree when m = 1. The Walsh transform is

useful as it describes many important properties of F . In particular, the nonlinearity of F can

be described by the Walsh transform since

NL(F ) = 2n−1 − 1

2
max

a∈Fn
2 ,b∈(Fm

2 )∗
|WF (a, b)|,

see [10] for a proof of this. The maximal nonlinearity of a vectorial Boolean function is the

universal bound 2n−1 − 2
n
2
−1 [10], we call functions achieving this bound bent. Equivalently,

bent functions are those that are PN (see [37]). Note that f : Fn
2 → F2 is PN if and only if all

derivatives Daf of f are balanced, taking the values of 0 and 1 equally often.

When n = m and n odd, the nonlinearity of F is bounded by 2n−1 − 2
n−1
2 [10]. Functions

achieving this bound form an important class of functions, namely almost bent functions.

Definition 2.2.2. Let F : Fn
2 → Fn

2 be a function. We call F almost bent (AB) or maximally

nonlinear if NL(F ) = 2n−1 − 2
n−1
2 .
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Clearly, the Walsh transform only takes integer values, so AB functions only exist for n odd.

There are two other characterizations of AB functions that we will mention.

1. AB functions are those withWF (a, b) ∈
{
0,±2

n+1
2

}
for all a, b ∈ Fn

2 such that (a, b) ̸= (0, 0)

(see [20]).

2. AB functions are those whose graph is a Sidon set GF ⊂ (Fn
2 )

2 such that for any point

p ∈ (Fn
2 )

2 \ GF , there are exactly 2n−2
6 subsets {a, b, c} ⊂ GF such that a + b + c = p

(see [45]). Using the terminology introduced in [43], all points in (Fn
2 )

2 \ GF are “covered”

(2
n−2
6 ) times if and only if F is AB.

We provide tables of the known infinite families of APN and AB power functions in Table 2.2.1

and Table 2.2.2, respectively. It has been conjectured since 1999 that Table 2.2.1 is complete,

up to cyclotomic equivalence; recall that xd and xd
′
are cyclotomic equivalent if there exists

0 ≤ i < n such that d ≡ 2i · d′ mod 2n − 1 or, d ≡ 2i · d−1 mod 2n − 1 when gcd(d, 2n − 1) = 1.

Note that in 2018, Dempwolff proved in [24] that cyclotomic equivalence and CCZ-equivalence

coincide for power functions. Since cyclotomic equivalence is much easier to compute than

CCZ-equivalence, this result was a breakthrough. Additionally, Yves Edel has computed that

Table 2.2.1 is complete for n ≤ 34 and n = 36, 48, 40, 42 (see [19] for further detail on Edel’s

computations).

Name d Condition Reference

Gold 2k + 1 gcd(k, n) = 1 [30] [42]
Kasami 22k − 2k + 1 gcd(k, n) = 1 [32] [33]
Welch 2t + 3 n = 2t+ 1 [25]

Niho

{
2t + 2

t
2 − 1 if t even

2t + 2
3t+1

2 − 1 if t odd
n = 2t+ 1 [27]

Inverse 22t − 1 n = 2t+ 1 [42] [4]
Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t [26]

Table 2.2.1: Known infinite families of APN power functions F2n → F2n of the form x 7→ xd.

Now, we will introduce an important theorem which we will use in Chapter 4. First recall

that the weight wt(f) of a Boolean function f over a finite set X is the sum
∑

x∈X f(x). The
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Name d Condition Reference

Gold 2k + 1 gcd(k, n) = 1 [30] [42]
Kasami 22k − 2k + 1 gcd(k, n) = 1 [33]
Welch 2t + 3 n = 2t+ 1 [16] [15]

Niho

{
2t + 2

t
2 − 1 if t even

2t + 2
3t+1

2 − 1 if t odd
n = 2t+ 1 [31]

Table 2.2.2: Known infinite families of AB power functions F2n → F2n of the form x 7→ xd, n
odd.

following theorem classifies APN (respectively AB) functions Fn
2 → Fn

2 in terms of the weight

(respectively bentness) of γF , and it also provides additional useful properties of γF .

Theorem 2.2.3. [18] Let F : Fn
2 → Fn

2 be a function. Then the following holds:

1. F is APN if and only if wt(γF ) = 22n−1 − 2n−1.

2. F is AB if and only if γF is bent.

3. If F is APN, then the function b 7→ γF (a, b) is balanced for any nonzero a ∈ Fn
2 .

4. If F is an APN permutation, then the function a 7→ γF (a, b) is balanced for any nonzero

b ∈ Fn
2 .

2.2.1 Crooked functions

There is another important class of vectorial Boolean functions which are of interest: crooked

functions.

Definition 2.2.4. Let F : Fn
2 → Fn

2 be a function. We call F crooked if the image set of the

derivative DaF is an affine hyperplane for all a ∈ (Fn
2 )

∗.

This definition of crooked functions first appeared in [34], and it is a generalization of the

definition first introduced in [1], which defines a function F : Fn
2 → Fn

2 to be crooked if F

satisfies the following three properties:

1. F (0) = 0;

2. F (x) + F (y) + F (x) + F (x+ y + z) ̸= 0 for any distinct x, y, z ∈ Fn
2 ;
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3. F (x) + F (y) + F (x) + F (x+ a) + F (y + a) + F (z + a) ̸= 0 if a ̸= 0 and x, y, z ∈ Fn
2 .

Unlike the original definition of crooked functions, the newer notion by Kyureghyan allows for

crooked functions to also exist for n even. However, no crooked permutation exists for n even.

Furthermore, Kyureghyan proved in [34] that the only crooked power maps are the quadratic

maps x 7→ x2
i+2j where gcd(n, i− j) = 1. Additionally, all crooked functions in odd dimensions

are also AB, implying that they are also APN since all AB functions are APN (see [45]).



3
Translating graphs of vectorial functions

Before we begin this chapter, we will provide some motivating background. In finite geometry

and combinatorics, a cap set is defined to be a subset of Fn
3 such that no three distinct elements

sum to zero. The well-known cap set problem goes as follows: for a fixed n, what is the largest

size of a cap set in Fn
3? Such a cap set is called maximal. Analogous to cap sets are Sidon

sets in Fn
2 , which we recall to be the sets such that no four distinct points sum to zero. It is

known that the graph of an APN power function F : F2n → F2n is a maximal Sidon set, that

is, x ∈ F2
2n \ GF implies GF ∪ {x} is not Sidon (see [12], [17]). Note that although “maximal”

has different meanings in the context of cap sets and Sidon sets, we will be considering maximal

Sidon sets rather than Sidon sets with the largest possible size for a given n.

In [29], partitions of F4
3 into four distinct maximal cap sets, each of size 20, along with a single

remaining point, were introduced. The question that motivates much of the research throughout

this chapter is the following: can we do something similar for Sidon sets in F2
2n by partitioning

F2
2n into 2n distinct maximal Sidon sets? We show in this chapter that we indeed can construct

such partitions.

13
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3.1 Two different collections of translations of GF

Recall that for a vectorial function F : Fn
p → Fm

p , the graph GF of F is the set

GF =
{
(x, F (x)) : x ∈ Fn

p

}
.

In this section, we study translations of GF and different collections of these translations.

For any (a, b) ∈ Fn
p ×Fm

p , let τa,b : Fn
p ×Fm

p → Fn
p ×Fm

p be the translation given by τa,b(x, y) =

(x+ a, y + b) for all (x, y) ∈ Fn
p × Fm

p . Hence

τa,b(GF ) = (a, b) +
{
(x, F (x)) : x ∈ Fm

p

}
=

{
(a+ x, b+ F (x)) : x ∈ Fm

p

}
.

The following lemma demonstrates a direct connection between the differential spectrum of a

vectorial function and the size of the intersection between any two translations of its graph.

Lemma 3.1.1. Let F : Fn
p → Fm

p be a vectorial function. If (a, b) and (c, d) are in Fn
p × Fm

p ,

then the size of the intersection τa,b(GF ) ∩ τc,d(GF ) is given by δF (a− c, b− d).

Proof. The size of τa,b(GF )∩τc,d(GF ) is the number of solutions (x, y) to the system of equations

x+ a = y + c

F (x) + b = F (y) + d.

Thus, it is sufficient to count the number of solutions to F (x+ a− c)− F (x) = b− d, which is

given by δF (a− c, b− d).

Let F : Fn
p → Fm

p be a vectorial function. If p = 2 and n = m, Lemma 3.1.1 tells us that any

two distinct translations of GF must either be disjoint or intersect at exactly two points if F is

APN. Now, we consider a collection of translations of GF that form a partition of Fn
p × Fm

p . For

any a ∈ Fn
p , let

Xa(F ) =
{
τa,b(GF ) : b ∈ Fm

p

}
. (3.1.1)

We can think of Xa as the translations along the second coordinate with the first coordinate at

a.
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Let a ∈ Fn
p . We now observe that Xa(F ) partitions Fn

p × Fm
p . Consider some point (x0, y0) ∈

Fn
p ×Fm

p , and let x = x0 − a and let b = y0 −F (x). Then (x0, y0) = (a+ x, b+F (x)) ∈ τa,b(GF ).

Hence, (x0, y0) is an element of a set in Xa(F ). Said differently, any two translations τa,b1(GF )

and τa,b2(GF ) are disjoint if b1 ̸= b2. Theorem 3.1.2 immediately follows.

Theorem 3.1.2. Let F : Fn
p → Fm

p be a function, and let a ∈ Fn
p . Then the sets in Xa(F ) are

pairwise disjoint. Equivalently, Xa(F ) is a partition of Fn
p × Fm

p .

Corollary 3.1.3. Let F : Fn
2 → Fn

2 be a function, and let a ∈ Fn
2 . If F is APN, then Xa

partitions Fn
2 × Fn

2 into 2n distinct Sidon sets.

Proof. Suppose F is APN. Then GF is a Sidon set. Also for all a, b ∈ (Fn
2 )

2, the translation

τa,b(GF ) is a Sidon set because (x, F (x)) + (y, F (y)) + (z, F (z)) + (w,F (w)) = 0 if and only if

(a+x, b+F (x))+(a+y, b+F (y))+(a+z, b+F (z))+(a+w, b+F (w)) = 0 for all x, y, z, w ∈ Fn
2 .

Since the Sidon property is invariant under translation, τa,b(GF ) is also a Sidon set for all

(a, b) ∈ Fn
2 ×Fn

2 . Since all elements in Xa are disjoint, they must be distinct, so Xa is a partition

of Fn
2 × Fn

2 into 2n distinct Sidon sets by Theorem 3.1.2.

Now that we know that translating along the second coordinate where the first coordinate is

fixed induces a partition of Fn
2 ×Fn

2 into 2n distinct Sidon sets, we now study the opposite case:

translating along the first coordinate where the second is fixed. For b ∈ Fm
p , let

Yb(F ) =
{
τa,b(GF ) : a ∈ Fn

p

}
. (3.1.2)

Theorem 3.1.2 tells us that the size of the set
⋃

X∈Xa(F )X is pn+m for any a ∈ Fn
p , or

equivalently, partitions the entire space. However, as we will see in Theorem 3.1.5, it is possible

that
⋃

Y ∈Yb(F ) Y does not cover all of Fn
p × Fm

p .

Before we state Theorem 3.1.5, we introduce a definition and some notation.

Definition 3.1.4. Let A and B be sets, and let f : A → B be a function. We say f is N -to-1

over A if the size of the preimage set f−1({b}) is N for all b ∈ im f . Furthermore, if A′ ⊆ A, we

say f is N -to-1 on A′ if the restriction map f |A′ is N -to-1.
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Regarding notation, let denote by [N ] be the set {1, 2, . . . , N} for any N ∈ N. Also, we use

both #X and |X| to denote the size of a finite set X, depending on which is most convenient.

Finally, in the case where sets A and B are known to be disjoint, we can represent their union

as A ⊔B.

Theorem 3.1.5. Let F : Fn
p → Fm

p be a function, and let b ∈ Fm
p . If

1. F (x) = 0 if and only if x = 0, and

2. there exists N ∈ N dividing pn − 1 such that F is N -to-1 on (Fn
p )

∗,

then #
⋃

Y ∈Yb(F ) Y = pn+ p2n−pn

N . In particular, if F is a permutation, then Yb(F ) is a partition

of Fn
p × Fn

p .

Proof. Suppose (1) and (2) hold. Then, for any a, a′ ∈ Fn
p and any x ∈ (Fn

p )
∗, we have

(a, b+ F (0)) = (a, b)

̸= (a′ + x, b+ F (x)).

Hence ⋃
Y ∈Yb(F )

Y =
⋃

a∈Fn
p

τa,b(GF )

=
{
(a, b+ F (0)) : a ∈ Fn

p

}
⊔
{
(a+ x, b+ F (x)) : a, x ∈ Fn

p , x ̸= 0
}
.

Notice that the size of
{
(a, b+ F (0)) : a ∈ Fn

p

}
is pn.

It remains to compute the size of
{
(a+ x, b+ F (x)) : a, x ∈ Fn

p , x ̸= 0
}
. Let a0, x0 ∈ Fn

p such

that x0 ̸= 0. First, we will show that

{
a ∈ Fn

p : (a0 + x0, b+ F (x0)) ∈ τa,b(GF )
}
=

{
x0 − x+ a0 : F (x) = F (x0), x ∈ (Fn

p )
∗} . (3.1.3)

Indeed, the elements of the set on the left-hand side of eq. (3.1.3) are the elements a ∈ Fn
p where

there exists x ∈ Fn
p such that (a+ x0, b+ F (x0)) = (a+ x, b+ F (x)), and since F (x0) must be

equal to F (x), we can rearrange to deduce that eq. (3.1.3) holds. Notice x0−x+a0 = x0−x′+a0

if and only if x = x′, so

#
{
a ∈ Fn

p : (a0 + x0, b+ F (x0)) ∈ τa,b(GF )
}
= N
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since F is N -to-1 on (Fn
p )

∗. This means every point of the form (a + x, b + F (x)) where x ̸= 0

is in exactly N distinct translations of GF . Therefore

#
⋃

Y ∈Yb(F )

Y = #
{
(a, b+ F (0)) : a ∈ Fn

p

}
+#

{
(a+ x, b+ F (x)) : a, x ∈ Fn

p , x ̸= 0
}

= pn +
pn(pn − 1)

N
.

Thus #
⋃

Y ∈Yb(F ) Y = pn + p2n−pn

N , as desired.

Corollary 3.1.6. Let F : Fn
2 → Fn

2 be a function, and let b ∈ Fn
2 . If F is an APN permutation,

then Yb partitions Fn
2 × Fn

2 into 2n distinct Sidon sets.

Proof. Suppose F is an APN permutation. Then F is 1-to-1 on all of Fn
2 . So, by Theorem 3.1.5,

the size of the union of the translations in Ya is 2n + 22n−2n

1 = 22n. Thus, Ya is a partition of

Fn
2 ×Fn

2 , and for similar reasoning as mentioned in Corollary 3.1.3, all elements of Yb are Sidon

sets.

A special case of Corollary 3.1.6 is when F is a power function xd over F2n for n odd. This

is because an APN power function F : F2n → F2n defined by F (x) = xd is bijective if n is odd

and 3-to-1 on F∗
2n (c.f. [28]). We can verify that any APN power function over F2n for n odd

must be bijective by the following lemma. We thank John Cullinan for making key observations

involved in the following proof.

Lemma 3.1.7. Let φ : F⋆
pn → F⋆

pn be a function given by x 7→ xm for some integer m. Then

1. φ is a homomorphism,

2. φ is a permutation if and only if pn − 1 is coprime to m.

Proof. (1). Let x, y ∈ Fpn . Then φ(xy) = (xy)m = xmym = φ(x)φ(y). Hence φ is a homomor-

phism.

(2). Since φ is a homomorphism, we know that φ is injective if and only if the kernel of φ is

trivial. Note that kerφ = {x ∈ F⋆
pn | xm = 1}. Since F⋆

pn is a cyclic group and the kernel of φ is
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a subgroup of F⋆
pn , we deduce that kerφ must be cyclic. Also, the order of kerφ divides m. By

Lagrange’s Theorem, the order of kerφ divides the order of F⋆
pn which is pn − 1.

Suppose that φ is injective, and by way of contradiction suppose that pn − 1 and m are not

coprime. Then, there exists a positive integer d > 1 and integers r, s such that m = dr and

pn − 1 = ds. Also, recall that xp
n−1 = 1 for all x ∈ F∗

pn . Therefore, for any x ∈ F∗
pn , we have

(xs)m = (xm)s

= (xdr)s

= (xds)r

= (xp
n−1)r

= 1r

= 1.

Since φ is injective, this implies xs = 1 for all x ∈ F∗
pn . However, this implies s is a multiple of

pn − 1, a contradiction since pn − 1 = ds. Therefore, pn − 1 must be coprime to m.

Conversely, suppose that pn−1 is coprime to m. Since | kerφ| divides m, we know that | kerφ|

is also coprime to pn − 1. However, since | kerφ| divides pn − 1, it follows that | kerφ| = 1. So

the kernel of φ is trivial and φ is injective.

Finding APN permutations F : Fn
2 → Fn

2 , where n is even, is a large open problem in cryp-

tography. Therefore, the only known instance for when the construction used in Theorem 3.1.5

can give a partition of Fn
2 × Fn

2 into 2n distinct Sidon sets is when n = 6. Namely, the APN

permutation over F26 is given by

F (x) =α25x57 + α30x56 + α32x50 + α37x49 + α23x48 + α39x43 + α44x42 + α4x41 + α18x40+

α46x36 + α51x35 + α52x34 + α18x33 + α56x32 + α53x29 + α30x28 + α1x25 + α58x24+

α60x22 + α37x21 + α51x20 + α1x18 + α2x17 + α4x15 + α44x14 + α32x13 + α18x12+

α1x11 + α9x10 + α17x8 + α51x7 + α17x6 + α18x5 + α0x4 + α16x3 + α13x1



3.2. TRANSLATIONS ALONG THE GRAPH 19

where α is a primitive element of F26 [8]. On the other hand, the construction used in Theo-

rem 3.1.2 gives a partition of Fn
2 × Fn

2 into 2n distinct Sidon sets for all n ∈ N since there exists

an APN function for all n ∈ N.

3.2 Translations along the graph

Now, we will consider a third method of translating the graph of a vectorial function. For a

function F : Fn
p → Fm

p , let G(F ) denote the set of translations

G(F ) =
{
τa,F (a)(GF ) : a ∈ Fn

p

}
. (3.2.1)

The set G(F ) can be thought of as the translations along the graph of F .

Recall that if X,Y ⊆ Fn
p , then X + Y denotes the set {x+ y : x ∈ X, y ∈ Y }. We will now

prove that the union of all translations in G(F ) is equal to GF + GF for any vectorial function

F : Fn
p → Fm

p .

Lemma 3.2.1. Let F : Fn
p → Fm

p be a vectorial function. Then
⋃

T∈G(F ) T = GF + GF .

Proof. Let (α, β) ∈
⋃

T∈G(F ) T . Then there exists a ∈ Fn
2 such that (α, β) ∈ τa,F (a)(GF ) ⊆

GF + GF . Hence,
⋃

T∈G(F ) T ⊆ GF + GF .

Now, suppose (a+ x, F (a) + F (x)) ∈ GF + GF . Then

(a+ x, F (a) + F (x)) ∈ τa,F (a))(GF )

⊆
⋃

T∈G(F )

T.

Thus,
⋃

T∈G(F ) T ⊇ GF + GF , and we conclude our proof.

Proposition 3.2.2. Let F : Fn
2 → Fn

2 be a function. If F is APN, then

#
⋃

T∈G(F )

T = 22n−1 − 2n−1 + 1
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Proof. Suppose F is APN. By Lemma 3.2.1
⋃

T∈G(F ) T = GF + GF , so⋃
T∈G(F )

T = GF + GF

= {(a+ b, F (a) + F (b)) : a, b ∈ Fn
2}

= {(0, 0)} ⊔ {(a+ b, F (a) + F (b)) : a, b ∈ Fn
2 , a ̸= b} .

By the definition of a Sidon set, all pairwise sums of GF are distinct, that is, (a, F (a)) +

(b, F (b)) = (c, F (c))+(d, F (d)) implies {a, b} = {c, d} when a, b, c, d ∈ Fn
2 are distinct. Therefore,

(a1 + b1, F (a1) + F (b1)) = (a2 + b2, F (a2) + F (b2)) if and only if {a1, b1} = {a2, b2} when F is

APN. So,

| {(a+ b, F (a) + F (b)) : a, b ∈ Fn
2 , a ̸= b} | = 1

2
(22n − 2n).

Thus, #
⋃

T∈G(F ) T = 22n−1 − 2n−1 + 1.

3.3 Translations along the diagonal

Similar to the previous section, we study collections of translations of the graph of a vectorial

function. However, we now study the diagonal translations τt,t over Fn
p × Fn

p . In particular,

we are interested in computing the size of the collection of all diagonal translations of GF where

F : Fn
p → Fn

p is a vectorial function. That is, given a vectorial function F : Fn
p → Fn

p , we want to

compute the size of D(F ) where D(F ) is the set

D(F ) =
⋃
t∈Fn

p

τt,t(GF ). (3.3.1)

It is entirely possible that a point in Fn
p ×Fn

p is contained in more than one diagonal translation

of GF . So, denote by θF (a, b) the number of diagonal translations of GF that contain (a, b), that

is,

θF (a, b) = |
{
t ∈ Fn

p : (a, b) ∈ τt,t(GF )
}
|.

We can easily show θF (a, b) is equal to the number of solutions to F (x) + x = b− a.

Lemma 3.3.1. Let F : Fn
p → Fn

p be a function. Let (a, b) ∈ Fn
p × Fn

p . Then θF (a, b) is equal to

the number of solutions to F (x)− x = b− a.
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Proof. Let (a, b) ∈ D(F ). Then, θF (a, b) is the number of t ∈ Fn
p where there exists x ∈ Fn

p such

that

a = t+ x

b = t+ F (x),

which is equivalent to counting the number of solutions to F (x)− x = b− a.

Clearly, for any function F : Fn
p → Fn

p , we have the equality

#D(F ) =
∑

(a,b)∈D(F )

1

θF (a, b)
.

However, we can make this equality even simpler by realizing that the diagonal translation

multiplicity of (a, b) ∈ Fn
p ×Fn

p is invariant under translation by (t, t) ∈ Fn
p ×Fn

p . More explicitly,

if (a, b) ∈ D(F ), then we see that θF (a, b) = θF (a + t, b + t) for any t ∈ Fn
p by Lemma 3.3.1.

This gives the following.

Proposition 3.3.2. The size of D(F ) for a function F from Fn
p to itself is given by

#D(F ) = pn
∑

(a,b)∈GF

1

θF (a, b)
. (3.3.2)

This tells us that we only need to compute the diagonal translation multiplicities of points in

the graph of a vectorial function F : Fn
p → Fn

p to determine the size of D(F ). Equivalently, to

compute the size of D(F ), it suffices to compute the number of solutions to F (x)−x = F (a)−a

for all a ∈ Fn
p .

3.3.1 The Gold function

We now fix F : F2n → F2n to be the vectorial Boolean function defined by F (x) = x2
k+1 where

gcd(k, n) = 1. As in Table 2.2.1, F is called the Gold function. The Gold function tends to be

the “simplest” case of an APN power function to study. We will conjecture the size of D(F )

where F is the Gold function motivated by computer calculations.

However, let us first consider the case F (x) = x3, or equivalently x 7→ x2
k+1 when k = 1. By

Lemma 3.3.1, θF (a, b) is the number of roots of x3 + x = a+ b for any (a, b) ∈ F2
2n . Therefore,
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for this Gold function, θF (a, b) is bounded above by 3, and we conjecture this holds for all other

Gold functions as well.

Conjecture 3.3.3. Let k, n ∈ N, and suppose gcd(k, n) = 1. Let F : F2n → F2n be the Gold

function given by F (x) = x2
k+1. Then θF (a, b) ≤ 3 for all (a, b) ∈ F2

2n.

Now, denote by Kn
F the set

Kn
F =

{
(a, b) ∈ F2

2n : θF (a, b) = n
}
.

Then |D(F )| =
∑M

i=1 |Ki
F | where M = max(a,b)∈F2

2n
θF (a, b). For the Gold function, we are able

to compute K2
F by applying Lemma 3.3.1.

Theorem 3.3.4. Let k, n ∈ N, and suppose gcd(k, n) = 1. Let F : F2n → F2n be the Gold

function given by F (x) = x2
k+1. If (a, b) ∈ D(F ) such that a = b, then θF (a, b) = 2.

Proof. Let (a, b) ∈ F2
2n . Suppose (a, b) ∈ D(F ) such that a + b = 0. It suffices to count the

number of solutions to x(x + 1)2
k
= 0. We see that the only solutions must satisfy x = 0 or

x2
k
= 1, and so therefore, the only solutions to x(x+1)2

k
= 0 are 0 and 1. Thus, θF (a, b) = 2.

We conjecture that the converse of Theorem 3.3.4 holds as well. If true, this would mean all

points (a, b) ∈ D(F ) where θF (a, b) = 2 must satisfy a = b. However, notice that x = x2
k+1 if

and only if x is either 0 or 1. Therefore, our conjecture is equivalent to the following.

Conjecture 3.3.5. Let k, n ∈ N, and suppose gcd(k, n) = 1. Let F : F2n → F2n be the Gold

function given by F (x) = x2
k+1. Then K2

F = {(t, t) : t ∈ F2n}.

We also conjecture the following, which describes the size ofK1
F , K

2
F , andK3

F . This conjecture

is motivated by computer calculations and is verified for x 7→ x3 where 2 ≤ n ≤ 13.

Conjecture 3.3.6. Let k, n ∈ N, and suppose gcd(k, n) = 1. Let F : F2n → F2n be the Gold

function given by F (x) = x2
k+1. Then the following holds:

1. |K1
F | =

{
22n−1 if n is even

22n−1 − 2n if n is odd
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2. |K2
F | = 2n

3. |K3
F | =

{
1
3(2

2n−1 − 2n+1) if n is even
1
3(2

2n−1 − 2n) if n is odd

If both Conjecture 3.3.3 and Conjecture 3.3.6 hold true, then for any Gold function F , the

size of D(F ) is given by

|D(F )| =

{
22n − 22n−2n

3 if n is even

22n − 22n+2n

3 if n is odd.
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4
Graph theoretical connections to vectorial
functions

The Kneser graph of a family of sets F is the graph that represents the disjointedness relations

between elements of F . In this chapter, we study the Kneser graph of all translations of the graph

of a vectorial function. We will show that these Kneser graphs can hold properties depending

on the cryptographic properties of a function. In particular, we show that APN functions are

those that correspond to a particular class of regular graphs and AB functions are those that

give rise to strongly regular graphs.

4.1 Graph theory background

It is an unfortunate coincidence that the word “graph” is used for the mathematical structure

consisting of vertices and edges and the set
{
(x, F (x)) : x ∈ Fn

p

}
for a function F : Fn

p → Fm
p .

For this reason, we will reserve the notation Γ for a graph in the sense of vertices and edges,

and GF for the graph of a vectorial function F (see Chapter 2).

A (simple) graph Γ is an ordered pair (V,E) where V is a set and E is a set with elements

of the form {u, v} ⊆ V × V where u ̸= v. Elements of V are called vertices and elements of

E are called edges. If (u, v) ∈ E is an edge, we say that u and v are adjacent. We will only

be considering graphs with a finite number of vertices. Recall that two graphs are isomorphic

25
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if they have the exact same structure. More formally, two graphs Γ = (V,E) and Γ′ = (V ′, E′)

are isomorphic if there exists a bijection φ : V → V ′ such that v and u are adjacent in Γ if and

only if φ(v) and φ(u) are adjacent in Γ′. If Γ and Γ′ are isomorphic, we write Γ ∼= Γ′.

Example 4.1.1. We call the graph with n vertices where any two vertices are adjacent the

complete graph on n vertices, denoted as Kn. See Figure 4.1.1.

Figure 4.1.1: The complete graph on 5 vertices, K5.

Definition 4.1.2. Let Γ = (V,E) be a graph. The complement graph Γ of Γ is the graph

(V,E′) where any two vertices of Γ are adjacent if and only if they are non-adjacent with respect

to Γ.

Example 4.1.3. Consider the complete graph on 5 vertices, K5. The complement of K5 is the

graph with 5 vertices and no edges. Graphs with no edges are often called null graphs. See

Figure 4.1.2.

Figure 4.1.2: The complement graph of K5.
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If we think of the graph as a collection of points and line segments lying in a plane, one

may ask if we can trace between any two points along the segments – this property is called

connectedness.

Definition 4.1.4. Let Γ = (V,E) be a graph. We call Γ connected if for any two distinct

vertices u, v ∈ V , there exists a path of edges from u to v.

Clearly, the complete graph Kn is connected as any two vertices are adjacent. On the other

hand, the complement of Kn is not connected because it has no edges. Moreover, if any vertex

in a graph is not adjacent to any other vertex, the graph cannot be connected.

Since any finite, connected graph has a path of finite length between any two vertices, there

is always well-defined notion of (finite) diameter for finite connected graphs.

Definition 4.1.5. Let Γ = (V,E) be a graph. Suppose Γ is connected. For any two distinct

vertices u, v ∈ V , the distance of u and v is the length of the shortest path between u and v.

The maximal distance of any two distinct vertices in V is called the diameter of Γ.

Once again, the complete graphKn is a trivial example as it has diameter 1. However, consider

the following example.

Example 4.1.6. Consider the graph in Figure 4.1.3. This graph is connected as for any two

distinct vertices, there exists a path between them. Furthermore, this graph is of diameter 3

since the vertices labeled 1 and 5 are of distance 3 and there is no other pair of vertices with

greater distance. Indeed, there exist other paths of equal distance as the shortest path between

the vertices labeled as 1 and 5, but none of these paths have length greater than 3.

1

2

3

4 56

7

Figure 4.1.3: A connected graph with diameter 3.
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An important class of graphs are those that we call regular.

Definition 4.1.7. Let Γ = (V,E) be a graph, and let v ∈ V . Then we say that

1. the set of vertices in V \ {v} that are adjacent to v is the neighborhood of v, denoted as

NΓ(v);

2. the degree of v is the size of NΓ(v), denoted as deg(v);

3. Γ is k-regular if all vertices have degree k.

A well-known relation between the number of edges in a graph Γ = (V,E) and the degrees of

vertices is the degree sum formula

2|E| =
∑
v∈V

deg(v). (4.1.1)

In the case that Γ is k-regular, the degree sum formula implies 2|E| = k|V |. We now introduce

an important subclass of regular graphs that not only exhibit symmetry with respect to the

degrees of vertices but also in the neighborhoods of vertices.

Definition 4.1.8. Let Γ be a graph, and let v be the number of vertices of Γ. Then Γ is strongly

regular with parameters (v, k, λ, µ) if Γ is a k-regular graph and there exist λ, µ ∈ Z≥0 such

that every two adjacent vertices in Γ have λ common neighbors and every two non-adjacent

vertices in Γ have µ common neighbors.

Hence, if Γ = (V,E) is a strongly regular graph with parameters (v, k, λ, µ), then for any

u, v ∈ V the size of NΓ(u) ∩NΓ(v) is λ if u and v are adjacent and µ otherwise.

Example 4.1.9. Suppose p is prime such that p ≡ 1 (mod 4). Let V = Fpn and E ={
(x, y) : x, y ∈ Fpn s.t. ∃a ∈ F∗

pn , a
2 = x− y

}
. The graph Γ = (V,E) is called the Paley graph

of order pn. Consider the Paley graph of order 5. Recall that F5 is the same as the field Z5, so

it suffices to consider the integers modulo 5, that is, V = Z5. Also, the squares of Z5 is exactly

the set {1, 4}, so

E = {(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)} .
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It is straightforward to see that Γ is a strongly regular graph with parameters (5, 2, 0, 1) as it is

also the 5-cycle graph (see Figure 4.1.4). More generally, all Paley graphs are strongly regular,

and in particular, the Paley graph of order q has parameters (q, q−1
2 , q−5

2 , q−1
4 ) (see, for instance,

[41]). We also picture the Paley graph of order 9 in Figure 4.1.5.

Figure 4.1.4: The Paley graph of order 5.

Figure 4.1.5: The Paley graph of order 9.

4.2 Cayley graphs of Boolean functions

Strongly regular graphs have appeared in the study of cryptographic functions before. In par-

ticular, [2] and [3] both explored the connections between perfect nonlinear Boolean functions

(or equivalently, bent Boolean functions) and strongly regular graphs. In order to discuss these

prior results, we must first define the Cayley graph of a Boolean function.
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Definition 4.2.1. Let f : Fn
p → F2 be a function. We define the Cayley graph Cay(f) of f as

the graph with vertex set Fn
p and edge set

Ef =
{
{u, v} ⊆ Fn

p × Fn
p : f(u+ v) = 1

}
.

Consider the Cayley graph of a function f : Fn
p → F2, and let u ∈ Fn

p . Since the map v 7→ u+v

is a bijection, it follows that the function x 7→ f(x+ u) has the same weight as f . This implies

that the degree of v with respect to Cay(f) is wt(f).

Proposition 4.2.2. The Cayley graph of any Boolean function f : Fn
p → F2 is a regular graph

such that all vertices have degree wt(f).

Furthermore, in case that f is a bent function over Fn
2 , the Cayley graph of f is strongly regular

as well – we will discuss in detail strongly regular graphs in Section 4.4.In [2], Bernasconi and

Codenotti showed that the Cayley graph of any bent Boolean function over Fn
2 is a strongly

regular graph with λ = µ. Afterward Bernasconi, Codenotti, and VanderKam proved the

converse in [3].

Theorem 4.2.3. [3] Let f : Fn
2 → F2 be a Boolean function. Then Cay(f) is a strongly regular

graph with the property that λ = µ if and only if f is bent.

Now, consider a vectorial Boolean function F : Fn
2 → Fn

2 . Recall that by Theorem 2.2.3, F

is AB if and only if γF is bent. Therefore, by applying Theorem 4.2.3, F is AB if and only if

Cay(γF ) is a strongly regular graph with λ = µ. In the remainder of this chapter, we will focus

on the properties of Cay(γF ), and therefore, we also apply our results to Cay(γF ).

4.3 The Kneser graph of translations of GF

In the previous section, we introduced the Cayley graph of a Boolean function. For a vectorial

function, F : Fn
2 → Fn

2 , it turns out that the Cayley graph of γF is the Kneser graph of all the

translations of GF . To see why this is, we must first introduce the definition of the Kneser graph

of a family of sets.
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Definition 4.3.1. Let F be a family of sets. The Kneser graph KG(F) of F is the graph

where vertices are elements of F , and two vertices are adjacent if and only if they are disjoint.

Example 4.3.2. Let F be the family of subsets of [5] = {1, 2, 3, 4, 5} of size 2. We picture

KG(F) in Figure 4.3.1. When considering the subsets of [n] of size k, the Kneser graph of this

family is often denoted as KG(n, k). We refer the reader to [38] for more on the Kneser graph

KG(n, k) in the context of extremal combinatorics.

Figure 4.3.1: The Kneser graph of subsets of [5] of size 2. Image from Wikipedia.

For a vectorial function F : Fn
p → Fm

p , let TF be the family of all translations of the graph of

F , that is

TF =
{
τa,b(GF ) = (a, b) + GF : a ∈ Fn

p , b ∈ Fm
p

}
.

While it is not immediately apparent, the number of distinct translations of GF depends on

the differential uniformity of F . Consequently, the size of TF is dependent on the differential

uniformity.

Lemma 4.3.3. Suppose n > 1. Let F : Fn
p → Fm

p be a vectorial function. If F has a differential

uniformity less than pn, then τa,b(GF ) = τc,d(GF ) if and only if (a, b) = (c, d). Equivalently,

there are pn+m distinct translations of GF if and only if the differential uniformity of F is less

than pn.

Proof. Suppose the differential uniformity of F is less than pn. By Lemma 3.1.1, the size of the

intersection of any two translations τa,b(GF ) and τc,d(GF ) is equal to δF (a − c, b − d). If a = c,
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then δF (a − c, b − d) takes value pn if b = d and otherwise it takes value 0. If a ̸= c, then

δF (a− c, b− d) ∈ ∆F , implying δF (a− c, b− d) < pn. Therefore, for any two distinct pairs (a, b)

and (c, d), the translations τa,b(GF ) and τc,d(GF ) are distinct.

Remark 4.3.4. Suppose L : Fn
p → Fm

p is linear, and let a ∈ (Fn
p )

∗. ThenDaL = L(x+a)−L(x) =

L(a), so L has differential uniformity pn since δL(a, L(a)) = 2n. Therefore the graph of any linear

function from Fn
p to Fm

p has less than pn+m distinct translations by Lemma 4.3.3.

Since the function γF is closely related to δF , we are naturally led to realize that the adjacency

relations in KG(TF ) are fully determined by γF . Recall from Lemma 3.1.1, that for any two

distinct translations of GF , say τa,b(GF ) and τc,d(GF ), the size of τa,b(GF ) ∩ τc,d(GF ) is equal to

δF (a − c, b − d). Therefore, τa,b(GF ) and τc,d are disjoint if and only if δF (a − c, b − d) = 0.

However, for (a, b) ̸= (c, d), observe that δF (a− c, b− d) = 0 if and only if γF (a− c, b− d) = 0.

Therefore, τa,b(GF ) and τc,d(GF ) are disjoint if and only if γF (a− c, b− d) = 0.

Proposition 4.3.5. Let F : Fn
p → Fm

p be a vectorial function. Then any two distinct vertices

τa,b(GF ) and τc,d(GF ) of KG(TF ) are adjacent if and only if γF (a− c, b− d) = 0.

It immediately follows that the Cayley graph of γF is (up to graph isomorphism) the comple-

ment of the Kneser graph of TF .

Proposition 4.3.6. Let F : Fn
p → Fm

p be a vectorial function. If F has differential uniformity

less than pn, then the complement graph of Cay(γF ) is isomorphic to KG(TF ).

Proof. Suppose the differential uniformity of F is less than pn. By the definition of the Cayley

graph of a Boolean function, the vertex set of Cay(γF ) is Fn
p × Fm

p , and the edge set of Cay(γF )

is {
((a, b), (c, d)) ∈ (Fn

p × Fm
p )× (Fn

p × Fm
p ) : γF (a+ c, b+ d) = 1

}
.

By corresponding any pair of vertices (a, b), (c, d) in Cay(γF ) to vertices τa,b(GF ), τc,d(GF ) in

KG(TF ), it immediately follows by Proposition 4.3.5 that (a, b) and (c, d) are adjacent in Cay(γF )

if and only if τa,b(GF ) and τc,d(GF ) are not adjacent in KG(TF ). Thus, Cay(γF ) ∼= KG(TF ).
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For an APN function F : Fn
2 → Fn

2 , the only possible case where KG(TF ) is not the complement

graph of Cay(γF ) is when n = 1. This is because for F : Fn
2 → Fn

2 to be APN, F must be is

differentially 2-uniform, but 2n = 2 is satisfied only when n = 1. So, in general, any graph of

any APN vectorial Boolean function from Fn
2 to Fn

2 has 22n distinct translations if n > 1.

Figure 4.3.2: KG(TF ) where F : F22 → F22 is given by x 7→ x3.

Figure 4.3.3: Adjacency matrix of KG(TF ) where F : F23 → F23 is defined by F (x) = x3.

Example 4.3.7. Consider the function F : F2 → F2 defined by F (x) = x3. Then

GF = {(0, 0), (1, 1)} ⊆ F2 × F2.

We will now show that there are only two distinct translations of GF . Clearly (0, 0) + GF = GF .

Now, observe that (1, 0)+GF = {(1, 0), (0, 1)} = (0, 1)+GF . Finally, we see that (1, 1)+GF = GF .



34CHAPTER 4. GRAPH THEORETICAL CONNECTIONS TO VECTORIAL FUNCTIONS

Thus, since there are only two distinct translations of GF which are also disjoint, the size of TF

is 2 and KG(TF ) is the complete graph on 2 vertices. This means, there cannot exist a bijection

between TF and F2 ×F2 as they have different sizes. Since the vertex set of Cay(γF ) is F2 ×F2,

we conclude that Cay(γF ) ̸∼= KG(TF ).

Figure 4.3.4: Adjacency matrix of KG(TF ) where F : F24 → F24 is defined by F (x) = x3.

As we will see, the Kneser graph of TF can have interesting properties depending on F : Fn
p →

Fm
p . Since the structure of KG(TF ) depends on the function γF , we will see that we can classify

APN and AB functions by regularity conditions on KG(TF ). We reserve this for Section 4.4,

and we will now discuss some basic elementary results on KG(TF ).

4.3.1 Preliminary observations and results

CCZ-equivalence naturally appears when discussing the graph of a vectorial Boolean function.

Since CCZ-equivalence defines two vectorial Boolean functions to be equivalent if their graphs are

affinely equivalent, it is not unreasonable to expect that if F, F ′ : Fn
2 → Fn

2 are CCZ-equivalent,

then KG(TF ) and KG(TF ′) are isomorphic. Indeed, this holds, and we prove this statement now.
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Proposition 4.3.8. Let F and F ′ be functions from Fn
2 to itself. If F and F ′ are CCZ equivalent,

then KG(TF ) and KG(TF ′) are isomorphic.

Proof. Suppose F and F ′ are CCZ equivalent. Then there exists an affine permutation A of

Fn
2 × Fn

2 such that A(GF ) = GF ′ . Denote by ua,b (resp. va,b) the vertex τa,b(GF ) in KG(TF )

(resp. τa,b(GF ′) in KG(TF ′)). Let ua,b and uc,d be two distinct vertices in KG(TF ). Then

A(ua,b) = A(a, b) + GF ′ and A(uc,d) = A(c, d) + GF ′ , so the image of a vertex in KG(TF ) is a

vertex in KG(TF ′) under A. Clearly ua,b and uc,d are adjacent if and only if A(ua,b) and A(uc,d)

are adjacent since A is a permutation.

Another topic of interest is finding the number of pairs of translations that are disjoint. This

is the same problem as counting the number of edges in KG(TF ). For a vectorial function

F : Fn
p → Fm

p with differential uniformity less than pn, it suffices to count the number of edges

in Cay(γF ) since Cay(γF ) is the complement graph of KG(TF ). Recall from Section 4.2 that

Cay(γF ) is a k-regular graph where k = wt(γF ). By using the degree sum formula eq. (4.1.1),

we know that the number of edges in Cay(γF ), say E, is equal to

E =
1

2

∑
(a,b)∈Fn

p×Fm
p

deg(a, b)

=
1

2

∑
a,b∈Fn

p×Fm
p

wt(γF )

=
pn+m

2
wt(γF ).

Hence, for a vectorial function F : Fn
p → Fm

p with differential uniformity less than pn, the number

of edges in KG(TF ) is (
pn+m

2

)
− pn+m

2
wt(γF ). (4.3.1)

Now, we consider some interesting substructures of KG(TF ). Recall the collection Xa(F ) ={
τa,b(GF ) : b ∈ Fm

p

}
where a ∈ Fn

p as defined in eq. (3.1.1). As shown in Theorem 3.1.2, Xa(F )

is a partition of Fn
p × Fm

p for any a ∈ Fn
p . By definition, any k distinct translations that are

pairwise disjoint induce a copy of the complete graph on k vertices as a subgraph of KG(TF ),

called a clique.
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Definition 4.3.9. Let Γ = (V,E) be a graph. A clique in Γ is a subset V ′ ⊆ V such that the

subgraph induced by V ′ is a complete graph. A maximum clique of Γ is a clique in Γ with

the largest number of vertices possible, and the clique number of Γ, denoted as ω(Γ), is the

number of vertices in a maximum clique.

Example 4.3.10. The complete graph Km contains cliques of size 1, 2, . . . ,m. Since Km is a

clique of size m, the maximum clique of Km is itself, so ω(Km) = m.

Example 4.3.11. Let F : Fn
2 → Fn

2 be the identity function. Consider the Cayley graph of γF .

By definition, γF (a, b) is equal to 1 when F (x+ a) + F (x) = b, and this equation is equivalent

to a = b. Therefore the edge set EγF of Cay(γF ) is

EγF =
{
{(a, b), (c, d)} ⊆ (Fn

2 × Fn
2 )

2 : γF (a+ c, b+ d) = 1
}

=
{
{(a, b), (c, d)} ⊆ (Fn

2 × Fn
2 )

2 : a+ c = b+ d
}

=
{
{(a, b), (c, d)} ⊆ (Fn

2 × Fn
2 )

2 : a+ b = c+ d
}
.

It is then clear that Cay(γF ) is the disjoint union of 2n copies of K2n since the map (a, b) 7→ a+b

is 2n-to-1.

The following proposition immediately follows from the fact that Xa(F ) is a partition of

Fn
p × Fm

p for any a ∈ Fn
p .

Proposition 4.3.12. Let F : Fn
p → Fm

p be a vectorial function. Then Xa(F ) is a clique of size

pm in KG(TF ) for any a ∈ Fn
p .

Hence, for a vectorial function F : Fn
p → Fm

p with non-maximal differential uniformity, there

exist pn distinct cliques of size pm that partition the vertices of KG(TF ). We can quickly

show that if n < logp(p
m + 1), then all cliques of this size in KG(TF ) are maximal, implying

ω(KG(TF )) = pm if n < logp(p
m + 1).

Theorem 4.3.13. Let F : Fn
p → Fm

p be a vectorial function. If n < logp(p
m + 1), then

ω(KG(TF )) = pm. In particular, this inequality is satisfied if m ≥ n, so ω(KG(TF )) = pm

if m ≥ n.
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Proof. Suppose n < logp(p
m + 1). Then n + m = logp(p

n+m) < logp(p
m(pm + 1)). Hence

pn+m < pm(pm + 1). By Proposition 4.3.12, the clique number of KG(TF ) is bounded below by

pm. If ω(KG(TF )) > pm, then there would exist pm+1 distinct sets in Fn
p×Fm

p of size pm that are

pairwise disjoint, but this is impossible since pm+n < pm(pm + 1). Thus ω(KG(TF )) = pm.

Corollary 4.3.14. Let F : Fn
p → Fm

p be a vectorial function such that n < logp(p
m+1). Suppose

S ⊆ Fn
p × Fm

p such that γF (a+ c, b+ d) = 0 for any distinct (a, b), (c, d) ∈ S. Then |S| ≤ pm.

It would also be interesting to answer the following: for a fixed n, what is the minimal integer

m such that any vectorial function F : Fn
p → Fm

p , the clique number of KG(TF ) is no larger than

pm?

4.4 Graph-theoretically classifying APN and AB functions

APN functions, AB functions, and other important subclasses of APN functions have been

classified in many different ways. In this section, we focus on the classifications of APN and

AB functions in graph-theoretical terms. Since the graphs in this section are very large (22n

vertices, and often with many edges), we are not stating that such classification may be useful in

computation. However, the symmetric behavior of APN functions can be seen when examining

them with graph-theoretical tools.

4.4.1 APN functions

As seen in the previous section, for a vectorial function F : Fn
p → Fm

p with non-maximal differ-

ential uniformity, we are able to compute the number of edges in KG(TF ) by simply knowing

the weight of γF . Since any APN function F : Fn
2 → Fn

2 has minimal differential uniformity 2, it

is guaranteed that the complement of KG(TF ) is Cay(γF ), which is wt(γF )-regular. Using this,

we are able to demonstrate a connection between the number of edges and regularity of KG(TF )

with the APNness of a vectorial Boolean function F .

Theorem 4.4.1. Let F : Fn
2 → Fn

2 such that the differential uniformity of F is less than 2n.

The following are equivalent:
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1. F is APN;

2. KG(TF ) has 22n−2(2n − 1)(2n + 2) edges;

3. KG(TF ) is a (22n−1 + 2n−1 − 1)-regular graph.

Proof. By Equation (4.3.1), the number of edges in KG(TF ) for a function F : Fn
2 → Fn

2 is(
22n

2

)
−22n

2 wt(γF ). Since Theorem 2.2.3 states that F is APN if and only if wt(γF ) = 22n−1−2n−1,

we know that F is APN if and only if KG(TF ) has(
22n

2

)
− 22n−1(22n−1 − 2n−1) = 22n−1(22n − 1)− 22n−1(22n−1 − 2n−1)

= 22n−1(22n − 1− 22n−1 + 2n−1)

= 22n−2(22n+1 − 2− 22n + 2n)

= 22n−2(2n − 1)(2n + 2)

edges. Hence, (1) and (2) are equivalent. By Proposition 4.3.6, we know that KG(TF ) is the

complement of Cay(γF ) which is wt(γF )-regular. Therefore, KG(TF ) is (22n − wt(γF ) − 1)-

regular. Thus, F is APN if and only if vertex in KG(TF ) has degree 22n − (22n−1 − 2n−1)− 1 =

22n−1 + 2n−1 − 1, so (1) and (3) are equivalent.

Therefore, from the Kneser graph of TF for a vectorial Boolean function F : Fn
2 → Fn

2 , we are

able to retrieve information about the APNness of F . However, we are also able to classify APN

functions with the Kneser graph in the following way.

Theorem 4.4.2. Let F : Fn
2 → Fn

2 be function. For any a ∈ Fn
2 , let Xa(F ) be as in eq. (3.1.1).

Then F is APN if and only if there are 22n−1 edges between Xa(F ) and Xa′(F ) in KG(TF ) for

any distinct a, a′ ∈ Fn
2 . In particular, F is APN if and only if, for all distinct a, a′ ∈ Fn

2 any

vertex in Xa(F ) is adjacent to half of the vertices in Xa′(F )

Proof. As previously mentioned, Xa(F ) is a clique of size 2n for any a ∈ Fn
2 by Theorem 3.1.2.

Let a, a′ ∈ Fn
2 be distinct. Suppose F is APN, and let E be the number of edges between Xa(F )

and Xa′(F ). Recall from Lemma 3.1.1 that for any b, b′ ∈ Fn
2 , the translations τa,b(GF ) and
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τa′,b′(GF ) are disjoint if and only if δF (a + a′, b + b′) = 0. Since a ̸= a′, it is sufficient to count

the number of pairs (b, b′) such that γF (a+ a′, b+ b′) = 0. Hence,

E = 22n −
∑

b,b′∈Fn
2

γF (a+ a′, b+ b′).

Since F is APN and a+ a′ ̸= 0, the association b 7→ γF (a+ a′, b) is balanced by Theorem 2.2.3.

Therefore

E = 22n −
∑

b,b′∈Fn
2

γF (a+ a′, b+ b′)

= 22n −
∑
b∈Fn

2

∑
b′∈Fn

2

γF (a+ a′, b+ b′)

= 22n − 2n · 2n−1

= 22n−1.

Thus, there are 22n−1 edges between Xa(F ) and Xa′(F ).

Conversely, if there are 22n−1 edges between Xa(F ) and Xa′(F ) for all distinct a, a′ ∈ Fn
2 ,

then there are

2n
(
2n

2

)
+ 22n−1

(
2n

2

)
= 2n(2n−1)(2n − 1) + 22n−1(2n−1)(2n − 1)

= 22n−2(2n − 1)(2n + 2)

edges in KG(TF ), implying F is APN by Theorem 4.4.1.

Remark 4.4.3. Suppose F : Fn
2 → Fn

2 is a vectorial Boolean function with differential uniformity

less than 2n. Consider the graph ΓF whose vertices are the sets Xa(F ) and such that Xa(F ) and

Xa′(F ) are adjacent if and only if there is an edge between their respective cliques in KG(TF ).

Additionally, assign each edge a weight for the number of edges between the associated cliques

in KG(TF ). Then F : Fn
2 → Fn

2 is APN if and only if ΓF is the complete graph where all edges

have weight 22n−1.

Informally, the graph discussed in Remark 4.4.3 is a “zoomed out” graph of KG(TF ). With

this in mind, notice that Figure 4.4.1 directly shows that KG(TF ) is connected where F : F2
2 → F2

2

is APN. This motivates us to generalize to all APN functions F : Fn
2 → Fn

2 .
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X(0,0)(F ) X(0,1)(F )

X(1,0)(F ) X(1,1)(F )

8

8

8

8

8 8

Figure 4.4.1: ΓF where F : F2
2 → F2

2 is APN.

Corollary 4.4.4. Let F : Fn
2 → Fn

2 be a function. If F is APN, then KG(TF ) is a connected

graph of diameter 2.

Proof. Suppose F is APN. Let (a, b), (c, d) ∈ Fn
2 × Fn

2 be distinct. Then τa,b(GF ) ∈ Xa(F ) and

τc,d(GF ) ∈ Xc. By Theorem 4.4.2 we know that τa,b(GF ) is adjacent to half of the vertices in Xc.

Since Xc is a clique, all vertices in it are adjacent, and so, there exists a path between τa,b(GF )

and τc,d(GF ) of length at most 2. Therefore KG(TF ) is a connected graph of diameter 2.

4.4.2 AB Functions and strongly regular graphs

Recall that AB functions are those functions F : Fn
2 → Fn

2 whose Walsh transform takes values

in the set
{
0,±2

n+1
2

}
at any non-zero (a, b) ∈ Fn

2 × Fn
2 . Additionally, AB functions can be

classified by the indicator function γF , as stated in the result by Carlet, Charpin, and Zinoviev

(see Theorem 2.2.3): F : Fn
2 → Fn

2 is AB if and only if γF is bent. As briefly mentioned in

Section 4.2, we are able to classify AB functions in terms of strongly regular graphs by applying

the results of Bernasconi, Codenotti, and VanderKam (c.f. [2] [3]). We will now define strongly

regular graphs.

Definition 4.4.5. Let Γ be a graph, and let v be the number of vertices of Γ. Then Γ is strongly

regular with parameters (v, k, λ, µ) if Γ is a k-regular graph and there exist λ, µ ∈ Z≥0 such

that every two adjacent vertices in Γ have λ common neighbors and every two non-adjacent

vertices in Γ have µ common neighbors.
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Although we can easily classify AB functions F : Fn
2 → Fn

2 as those whose γF function has a

strongly regular Cayley graph using results from Bernasconi, Codenotti, and VanderKam, we

instead provide a new proof showing that the Cayley graph of a bent function f : Fn
2 → F2 is

strongly regular with λ = µ = wt(f)− 2n−2. We prove the converse as well. By Theorem 2.2.3,

γF is bent if and only if F is AB, and thus, provides a classification of AB functions in terms

of strongly regular graphs. Note, however the converse of the above statement is not equivalent

to proving that f is bent provided Cay(f) is strongly regular with λ = µ. Our proof of the

following theorem involves simple counting and does not rely on an argument using eigenvalues

of Cay(f).

Theorem 4.4.6. Suppose n is even, and let f : Fn
2 → F2. Suppose f(0) = 0. Then f is bent if

and only if Cay(f) is a strongly regular graph with λ = µ = wt(f)− 2n−2.

Proof. Throughout this proof, for any a, b ∈ Fn
2 and any i, j ∈ F2, let Mi,j(a, b) be the cardinality

of the set {x ∈ Fn
2 : f(x+ a) = i and f(x+ b) = j}. Note that for any a, b ∈ Fn

2 , the following

holds by construction:

M0,0(a, b) +M0,1(a, b) = 2n − wt(f) and

M1,0(a, b) +M1,1(a, b) = M0,1(a, b) +M1,1(a, b)

= wt(f).

Suppose f is bent. Then, f is PN, so for all a ̸= 0, the derivative Daf(x) = f(x+ a) + f(x)

is balanced. This means that, for all a ∈ Fn
2 such that a ̸= 0, the following equality holds

∑
x∈Fn

2

(f(x+ a) + f(x) mod 2) = 2n−1. (4.4.1)

Let a, b ∈ Fn
2 be distinct, and let η be the number of common neighbors between a and b in

Cay(f), that is, η = |NCay(f)(a) ∩NCay(f)(b)|. Hence,

η = | {x ∈ Fn
2 \ {a, b} : f(x+ a) = 1 = f(x+ b)} |

= | {x ∈ Fn
2 : f(x+ a) = 1 = f(x+ b)} |

= M1,1(a, b).
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Since M0,0(a, b) +M1,1(a, b) is the number of x ∈ Fn
2 such that f(x+ a) + f(x+ b) ≡ 0 mod 2,

it follows that

M0,0(a, b) +M1,1(a, b) = 2n −
∑
x∈Fn

2

(f(x+ a) + f(x+ b) mod 2)

= 2n −
∑
x∈Fn

2

Da+bf(x+ b)

= 2n −
∑
x∈Fn

2

Da+bf(x),

and by Equation (4.4.1), we have M0,0(a, b) + M1,1(a, b) = 2n−1. So far, we have shown

M0,0(a, b)+M0,1(a, b) = 2n−wt(f) and M0,1(a, b)+M1,1(a, b) = wt(f) = M1,0(a, b)+M1,1(a, b)

and M0,0(a, b) +M1,1(a, b) = 2n−1. By solving the system of equations, we have

M0,0(a, b) = 2n − 2n−2 − wt(f)

M0,1(a, b) = M1,0(a, b) = 2n−2

M1,1(a, b) = wt(f)− 2n−2.

Therefore, the number of common neighbors of any two distinct vertices a and b in Cay(f) is

wt(f)− 2n−2 regardless if a and b are adjacent. Thus, Cay(f) is a strongly regular graph with

λ = µ = wt(f)− 2n−2.

Now, suppose that Cay(f) is a strongly regular graph with λ = µ = wt(f) − 2n−2. Then

M1,1(a, b) = λ for all a, b ∈ Fn
2 where a ̸= b. For similar reasoning as the first part of this proof,

we have the following for any a, b ∈ Fn
2 where a ̸= b:

M0,0(a, b) +M0,1(a, b) = 2n − wt(f)

M1,0(a, b) +M1,1(a, b) = wt(f)

M0,1(a, b) +M1,1(a, b) = wt(f)

M0,0(a, b) +M1,1(a, b) = 2n −
∑
x∈Fn

2

Da+bf(x).



4.4. GRAPH-THEORETICALLY CLASSIFYING APN AND AB FUNCTIONS 43

Therefore,

∑
x∈Fn

2

Da+bf(x) = 2n − λ−M0,0(a, b)

= 2n − λ− (2n − wt(f)−M0,1(a, b))

= M0,1(a, b)− λ+wt(f)

= 2(wt(f)− λ)

= 2(wt(f)− (wt(f)− 2n−2))

= 2n−1,

for any a, b ∈ Fn
2 where a ̸= b. Hence, all first-order derivatives of f are balanced, so f is PN.

Thus, f is bent.

Theorem 4.4.7. Let F : Fn
2 → Fn

2 be a vectorial Boolean function. Then F is AB if and only

if KG(TF ) is a strongly regular graph with parameters (22n, 22n−1 + 2n−1 − 1, 22n−2 + 2n−1 −

2, 22n−2 + 2n−1).

Proof. It is well-known (c.f. [7]) that if Γ is a strongly regular graph with parameters (v, k, λ, µ),

then Γ is strongly regular with parameters (v, v−k−1, v−2−2k+µ, v−2k+λ). By Theorem 4.2.3,

Cay(γF ) is a strongly regular graph with parameters (22n,wt(γF ),wt(γF )−22n−2,wt(γF )−22n−2)

if and only if γF is bent. Therefore, by taking the complement of Cay(γF ) and apply-

ing Theorem 2.2.3, we conclude that KG(TF ) is a strongly regular graph with parameters

(22n, 22n−1 + 2n−1 − 1, 22n−2 + 2n−1 − 2, 22n−2 + 2n−1) if and only if F is AB.

As mentioned in [45], a characterization of AB functions F : Fn
2 → Fn

2 in terms of the sets

imDaF is an area of interest because both APN and crooked functions have been characterized

in terms of the sets imDaF (sometimes denoted as Ha(F )).

Let F : Fn
2 → Fn

2 be a vectorial Boolean function. For any (a, b), (c, d) ∈ Fn
2 × Fn

2 , denote by

Sa,b,c,d the complement of {(a, b), (c, d)}. Then by Theorem 4.4.7, F is AB if and only if for any

distinct (a, b), (c, d) ∈ Fn
2 × Fn

2 , the size of the set

{(x, y) ∈ Sa,b,c,d : γF (a+ x, b+ y) = 0 = γF (c+ x, d+ y)}
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is 22n−2 + 2n−1 − 2 if γF (a+ c, b+ d) = 0 and 22n−2 + 2n−1 otherwise. Notice that

{(x, y) ∈ Sa,b,c,d : γF (a+ x, b+ y) = 0 = γF (c+ x, d+ y)}

= {(x, y) ∈ Sa,b,c,d : x = a, y ̸= b, γF (a+ c, d+ y) = 0}

⊔ {(x, y) ∈ Sa,b,c,d : x = c, y ̸= d, γF (a+ c, b+ y) = 0}

⊔ {(x, y) ∈ Sa,b,c,d : a ̸= x ̸= c, γF (a+ x, b+ y) = 0 = γF (c+ x, d+ y)}

for any (a, b), (c, d) ∈ Fn
2 × Fn

2 distinct. Notice that

Ta,b,c,d := {(x, y) ∈ Sa,b,c,d : a ̸= x ̸= c, γF (a+ x, b+ y) = 0 = γF (c+ x, d+ y)}

= {(x, y) ∈ Sa,b,c,d : a ̸= x ̸= c, y /∈ ((b+ imDa+xF ) ∪ (d+ imDc+x))} .

Let

Ua,b,c,d = {(x, y) ∈ Sa,b,c,d : x = a, y ̸= b, γF (a+ c, d+ y) = 0}

Va,b,c,d = {(x, y) ∈ Sa,b,c,d : x = a, y ̸= b, γF (a+ c, d+ y) = 0} .

Then F : Fn
2 → Fn

2 is AB if and only if (a, b), (c, d) ∈ Fn
2 × Fn

2 where (a, b) ̸= (c, d) implies

|Ta,b,c,d|+ |Ua,b,c,d|+ |Va,b,c,d| =

{
22n−2 + 2n−1 − 2 if γF (a+ c, b+ d) = 0

22n−2 + 2n−1 otherwise.

We can compute the size of Ua,b,c,d and Va,b,c,d by noticing they both have size

2n − 1−
∑
β∈Fn

2

γF (a+ c, β) + γF (a+ c, b+ d).

Therefore, if a + c = 0, then |Ua,b,c,d| = |Va,b,c,d| = 2n − 1. If a + c ̸= 0 and F is APN, we can

apply Theorem 2.2.3 to determine that

|Ua,b,c,d| = |Va,b,c,d| = 2n − 1− 2n−1 + γF (a+ c, b+ d)

= 2n−1 − 1 + γF (a+ c, b+ d)

for all (a, b), (c, d) ∈ Sa,b,c,d. Conversely, if |Ua,b,c,d| = |Va,b,c,d| = 2n−1 − 1 + γF (a+ c, b+ d) for

all (a, b), (c, d) ∈ Fn
2 × Fn

2 where (a, b) ̸= (c, d), then F is APN. So for any distinct (a, b), (c, d) ∈
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Fn
2 × Fn

2

|Ua,b,c,d|+ |Va,b,c,d| =


2n+1 − 2 if a = c

2n − 2 if a ̸= c and γF (a+ c, b+ d) = 0

2n if a ̸= c and γF (a+ c, b+ d) = 1.

if and only if F is APN. From this, we are able to derive the following theorem.

Theorem 4.4.8. Let F : Fn
2 → Fn

2 be a vectorial Boolean function. Then F is AB if and only

if F is APN such that the size of

Ta,b,c,d = {(x, y) ∈ Sa,b,c,d : a ̸= x ̸= c, y /∈ ((b+ imDa+xF ) ∪ (d+ imDc+x))}

is given by

|Ta,b,c,d| =


22n−2 − 2n+1 + 2n−1 if a = c

22n−2 − 2n + 2n−1 if a ̸= c and γF (a+ c, b+ d) = 0

22n−2 + 2n−1 − 2n if a ̸= c and γF (a+ c, b+ d) = 1

for all distinct (a, b), (c, d) ∈ Fn
2 × Fn

2 .

Proof. Suppose F is AB, and let (a, b), (c, d) ∈ Fn
2 × Fn

2 be distinct. Then

|Ta,b,c,d|+ |Ua,b,c,d|+ |Va,b,c,d| =

{
22n−2 + 2n−1 − 2 if γF (a+ c, b+ d) = 0

22n−2 + 2n−1 otherwise.

So,

|Ta,b,c,d| = −(Ua,b,c,d + Va,b,c,d) +

{
22n−2 + 2n−1 − 2 if γF (a+ c, b+ d) = 0

22n−2 + 2n−1 otherwise

=


22n−2 − 2n+1 + 2n−1 a = c

22n−2 − 2n + 2n−1 if a ̸= c and γF (a+ c, b+ d) = 0

22n−2 + 2n−1 − 2n if a ̸= c and γF (a+ c, b+ d) = 1

.

Now, assume the converse. Since F is APN, we have

|Ua,b,c,d|+ |Va,b,c,d| =


2n+1 − 2 if a = c

2n − 2 if a ̸= c and γF (a+ c, b+ d) = 0

2n if a ̸= c and γF (a+ c, b+ d) = 1.
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Therefore

|Ta,b,c,d|+ |Ua,b,c,d|+ |Va,b,c,d| =


22n−2 − 2n+1 + 2n−1 a = c

22n−2 − 2n + 2n−1 if a ̸= c and γF (a+ c, b+ d) = 0

22n−2 + 2n−1 − 2n if a ̸= c and γF (a+ c, b+ d) = 1

+


2n+1 − 2 if a = c

2n − 2 if a ̸= c and γF (a+ c, b+ d) = 0

2n if a ̸= c and γF (a+ c, b+ d) = 1

=


22n−2 + 2n−1 − 2 if a = c

22n−2 + 2n−1 − 2 if a ̸= c and γF (a+ c, b+ d) = 0

22n−2 + 2n−1 if a ̸= c and γF (a+ c, b+ d) = 1

=

{
22n−2 + 2n−1 − 2 if γF (a+ c, b+ d) = 0

22n−2 + 2n−1 otherwise.

Thus, F is AB.

Therefore, we have classified AB functions in terms of their APNness and a condition on their

first-order derivatives. It is natural to ask whether the condition on the APNness of F : Fn
2 → Fn

2

in Theorem 4.4.8 necessary. This is a question that still needs further work, and we hope that

in the near future there will be a classification of AB functions in terms of the images of their

first-order derivatives.

4.4.3 Crooked functions

We now discuss crooked functions and why some graph-theoretical classification is reasonable.

Recall that a function F : Fn
2 → Fn

2 is called crooked if imDaF is an affine hyperplane for all

non-zero a ∈ Fn
2 . Both APN and AB functions could be classified by properties of their γF

functions, and it turns out that crooked functions can be as well. This classification was proved

in [11], but first, we must introduce the following definition.

Definition 4.4.9. Let f : Fn
2 → F2 be a Boolean function. Suppose n is even and f is bent.

We say f is in the Maiorana-McFarland class (MM class) if there exists a permutation

π : Fn/2
2 → Fn/2

2 and a Boolean function g : Fn/2
2 → F2 such that f(x, y) = x · π(y) + g(y). Also,

the completed MM class is the set of all functions that are EA-equivalent to MM functions.
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We now are ready to introduce the classification of crooked functions proven in [11].

Proposition 4.4.10. [11] A function F : Fn
2 → Fn

2 is generalized crooked if and only if γF is

affine with respect to b. If n is odd, then F is CCZ-equivalent to a generalized crooked function

if and only if γF is in the completed MM class.

This proposition is evidence that we may be able to classify crooked functions in terms of the

Cayley graph of γF , and therefore, the Kneser graph of TF .
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5
Uniform exclude distributions

As we have previously discussed, APN functions are an important notion in cryptography as

they are those (n, n)-functions that are optimally resistant to a differential attack when used as

a substitution box in a block cipher. However, APN functions are also those (n, n)-functions F

whose graph GF = {(x, F (x)) : x ∈ Fn
2} is a Sidon set in (Fn

2 )
2. In this chapter, we study the

case when GF is a Sidon set, and in particular, we study the exclude distribution of GF for APN

functions F .

Recall that a Sidon set S ⊆ Fn
2 is a set such that the sum of any four distinct elements is

non-trivial. Observe that if a, b, c ∈ S are distinct and S is Sidon, then a + b + c /∈ S. We call

the set consisting of all the sums of three points in S the exclude set.

Definition 5.0.1. Let S ⊆ Fn
2 .

1. The exclude set X(S) of S is the set

X(S) = {a+ b+ c : a, b, c ∈ S and | {a, b, c} | = 3} .

2. We say x ∈ X(S) is an exclude point of S.

3. Furthermore, the exclude multiplicity (or simply the multiplicity) multS(x) of x ∈

Fn
2 \ S is the number of distinct subsets {a, b, c} ⊆ S of size 3 such that a+ b+ c = x.

49
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Hence, a set S ⊆ Fn
2 is Sidon if and only if S ∩ X(S) = ∅. A Sidon set S ⊆ Fn

2 is called

maximal if no point in Fn
2 \ S has multiplicity 0. Determining the largest size of a maximal

Sidon set is a well-known problem and is only known precisely for n ≤ 10 (see [22], [39], [23]).

However there are known bounds on the size of the largest maximal Sidon set (see also [44]).

In [12], it was conjectured that any (n, n)-function with so-called algebraic degree n must be

not be APN for n ≥ 3. If true, this conjecture would imply that any function F ′ obtained by

changing the value of APN (n, n)-function F at a single point is not APN. As shown in [17],

any such functions F ′ are not APN if and only if the graph of all APN functions are maximal

Sidon sets. This seems reasonable as Redman, Rose, and Walker showed in [43] that the smallest

maximal Sidon set in Fn
2 is of size O((n · 2n)

1
3 ) by generalizing a result of Ruzsa. However, as

mentioned in [17], “there seems to be room for the existence of APN functions whose graphs

are non-maximal Sidon sets” since |GF | = 2n is approximately
√
2 times smaller than the best

known upper bounds on the largest maximal Sidon set (see [44], [23]).

The exclude distribution of a Sidon set S ⊆ Fn
2 is the function that takes a point in Fn

2 \ S to

its multiplicity. To provide an overview of this chapter, we first give some preliminary results

on the exclude distribution. Then, we explore the APN function-maximal Sidon set conjecture

and introduce the notion of uniform exclude distributions. We then prove in Section 5.3 that

the graph any Gold function (a power APN function F (x) = x2
k+1 where gcd(k, n) = 1) has an

exclude distribution that is uniform on an equally-sized partition of (Fn
2 )

2 \ GF . We conclude

this chapter by extending this result to all APN plateaued functions whose component functions

are all unbalanced in Section 5.3.3.

5.1 Visualizing Sidon sets in Fn
2

A common way to think about Fn
2 is as the vertices of the n-dimensional hypercube in Rn, but

clearly, this becomes difficult to do as soon as n = 4. In this section, we discuss visualizing Fn
2 in

a planar fashion. One tool created to visualize Sidon sets in Fn
2 is the Qap Visualizer [46]. The

Qap Visualizer is an online web-based tool used to visualize Sidon sets in Fn
2 where 1 ≤ n ≤ 14.
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For any n, we will provide two algorithms for constructing the same planar grid of Fn
2 . In

particular, if n is even, then our grid will have n
2 rows and n

2 columns, and in the case of n

odd, it will have n+1
2 rows and n−1

2 columns. Equivalently, the grid will have ⌊n2 ⌋ rows and⌈n2 ⌉

columns for any n > 1, and in case n = 1, our grid will simply have 1 row and 2 columns.

Suppose n > 1, and consider a vector a ∈ Fn
2 as a bitstring, that is, a is a sequence of values

in {0, 1}. We use standard indexing for bitstrings, that is, we index the right-most bit of a as 0

and the left-most as n− 1. Let ai denote the ith bit of a. We can then construct two vectors xa

and ya consisting of the bits from the even and odd indices of a, respectively. Let nx = ⌈n2 ⌉, let

ny = ⌊n2 ⌋. Now, let

xa = (a2nx−2, a2nx−4, . . . , a2, a0) ∈ Fnx
2 and

ya = (a2ny−1, a2ny−3, . . . , a3, a1) ∈ Fny

2 ,

said differently, xa is the vector of all “even bits” in a and ya is all of the “odd bits” in a. One

can easily show that this process gives us an isomorphism from Fn
2 to Fnx

2 × Fny

2 .

Example 5.1.1. Suppose n = 4 and a = (0, 1, 0, 1) ∈ F4
2. Then ax = (1, 1) and ay = (0, 0).

Example 5.1.2. Suppose n = 5 and a = (1, 0, 1, 1, 0) ∈ F5
2. Then ax = (1, 1, 0) and ay = (0, 1).

Consider the standard integer representation of s ∈ Fn
2 , that is, we identify s with the integer∑n−1

i=0 2isi. Therefore the bijection a 7→ (xa, ya) gives us a way of mapping a vector a ∈ Fn
2 to a

pair of (x, y) coordinates by identifying xa and ya with their integer representations, giving us

a way to map vectors in Fn
2 to (x, y) coordinates in Z× Z.

Now, for any a ∈ Fn
2 , identify a with (x, y) where x and y are the integer representations

of xa and ya, respectively. Doing this for all vectors in Fn
2 , we have uniquely identified each

vector with a (x, y) coordinate. Now, we consider a grid where we enumerate rows from top to

bottom and columns from left to right – with all indices starting at 0. Then, we have a planar

representation of Fn
2 as a finite grid1. See Table 5.1.1 and Table 5.1.2.

1One can easily generalize this to provide a planar representation of Zn
m for any m,n ∈ N.
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0 1 4 6

2 3 5 7

Table 5.1.1: Planar representation of F3
2 with integer coordinates.

0 1 4 6

2 3 5 7

8 9 12 13

10 11 14 15

Table 5.1.2: Planar representation of F4
2 with integer coordinates.

Example 5.1.3. Let a = (1, 0, 0, 0) ∈ F4
2. Then ax = (0, 0) and ay = (1, 0). The integer

representation of a is 8, and the integer representations of ax and ay are 0 and 2, respectively.

Therefore, 8 has coordinates (0, 2) in our planar representation of F4
2, that is, 8 appears in the

0th column and the 2nd row (with indices starting at 0), see Table 5.1.2.

Using this same planar representation of Fn
2 , we can visualize Sidon sets in Fn

2 . The Qap

Visualizer represents Fn
2 in the same way and pictures Sidon sets. For a Sidon set S ⊆ Fn

2 , we

represent a point in S as a green diamond, and exclude points in X(S) are labeled with their

multiplicity.

Figure 5.1.1: A Sidon set in F4
2 of size 6, the largest possible.

Figure 5.1.2: A Sidon set in F6
2 of size 9, the largest possible.
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5.2 The exclude distribution

The exclude set of a Sidon set S ⊆ Fn
2 is exactly the set of points such that any superset of S

including a point from X(S) is not a Sidon set. For this reason, the exclude set of S plays a

critical role in the structure of S.

Now, notice that Fn
2 is the disjoint union ofX(S) and the set of all points of exclude multiplicity

0 (with respect to S). For this reason, we have the following lemma.

Lemma 5.2.1. Let S ⊆ Fn
2 be a Sidon set. Then

∑
x∈X(S)multS(x) =

∑
x∈Fn

2 \S
multS(x).

Proof. Notice that if x ∈ Fn
2 \ S, then x /∈ X(S) if and only if multS(x) = 0. Therefore, the

sums of the multiplicities of points in X(S) and Fn
2 \ S are equal.

Now, recall the following proposition.

Proposition 5.2.2. [22] Let S ⊆ Fn
2 be a Sidon set. Then

∑
x∈X(S)multS(x) =

(|S|
3

)
.

Therefore, by combining Lemma 5.2.1 and Proposition 5.2.2, we have

(
|S|
3

)
=

∑
x∈X(S)

multS(x) =
∑

x∈Fn
2 \S

multS(x). (5.2.1)

We now introduce notation for the minimal and maximal exclude multiplicities for a given

Sidon set S. Denote by emin(S) and emax(S) the minimal and maximal exclude point multiplic-

ities, respectively. That is,

emin(S) = min
x∈Fn

2 \S
multS(x), and

emax(S) = max
x∈Fn

2 \S
multS(x).

Proposition 5.2.3. Let S ⊆ Fn
2 be a Sidon set. Let z be the number of points in Fn

2 \ S with

multiplicity 0. Then

(2n − |S|)emin(S) ≤
(
|S|
3

)
≤ (2n − |S| − z)emax(S). (5.2.2)
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Proof. By eq. (5.2.1), we have

(
|S|
3

)
=

∑
x∈Fn

2 \S

multS(x)

≥ |Fn
2 \ S| · emin(S)

= (2n − |S|)emin(S).

Similarly,

(
|S|
3

)
=

∑
x∈X(S)

multS(x)

≤ |X(S)| · emax(S)

= (|Fn
2 \ S| − z)emax(S)

= (2n − |S| − z)emax(S).

Thus, eq. (5.2.2) holds.

In the case where emin(S) and emin(S) are equal, we call S a k-cover where k = emin(S) =

emax(S).
2 Notice that all k-covers are maximal Sidon sets if and only if k ̸= 0. Hence, if S is a

k-cover and |S| ≥ 3, then S is maximal.

In general, very little is known about k-covers as it seems that they are difficult to find.

However, we recall from Chapter 2 that AB functions are those whose graph is a maximal Sidon

set with all exclude points having the same multiplicity [45]. Therefore AB functions are those

APN functions such that GF is a (2
n−2
6 )-cover. We will now describe the exclude multiplicities

of a Sidon set in terms of the exclude distribution.

Definition 5.2.4. Let S be a Sidon set in Fn
2 . We define the exclude distribution of S to be

the function dS : Fn
2 \ S → Z≥0 defined by dS(x) = multS(x) for all x ∈ Fn

2 \ S.

The exclude distribution captures information about the exclude points of a Sidon set and

their multiplicities. Since we are working with finite sets, the image of dS is bounded for any

2Note that k-covers do not exist in all dimensions (c.f. [22]).
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Sidon set S ⊆ Fn
2 . In particular, the maximum value that dS takes is emax(S). Similarly, the

minimum value that dS takes is emin(S).

The exclude distribution is useful in determining properties of a Sidon set, and studying the

exclude distributions of two different Sidon sets S, S′ ⊆ Fn
2 can be quite useful in determining

shared or differing properties of S and S′. To compare two different exclude distributions, we

need a notion of equivalence. Exclude distribution equivalence (ED-equivalence) considers the

exclude distributions of S and S′ to be equivalent if and only if the number of k-points in X(S)

is equal to the number of k-points in X(S′).

Definition 5.2.5. Let S be a Sidon set in Fn
2 . If S′ ⊆ Fn

2 is a Sidon set, we say that S

and S′ are exclude distribution equivalent (ED-equivalent) if there exists a permutation

σ : Fn
2 \ S → Fn

2 \ S′ such that dS = dS′ ◦ σ.

Now, we explore ED-equivalence and its relation to general affine equivalence. In particular,

we will show that ED-equivalence is implied by affine equivalence while the converse is not true

in general.

Theorem 5.2.6. Let S, S′ ⊆ Fn
2 be Sidon sets. If there exists an affine permutation A : Fn

2 → Fn
2

such that A(S) = S′, then S and S′ are ED-equivalent.

Proof. Suppose there exists an affine permutation A : Fn
2 → Fn

2 such that A(S) = S′. Clearly, if

|S| = |S′| < 3, then exclude points in both Fn
2 \S and Fn

2 \S′ all have multiplicity 0, implying that

dS = dS′ ◦ σ where σ : Fn
2 \ S → Fn

2 \ S′ is any permutation. Hence S and S′ are ED-equivalent

if |S| = |S′| < 3. Suppose |S| ≥ 3. Let x ∈ Fn
2 \ S, and let k = multS(x).

Case 1: Suppose k = 0. Then a1+a2+a3 ̸= x for all a1, a2, a3 ∈ S, where a1, a2, a3 are distinct.

Then A(a1) +A(a2) +A(a3) = A(a1 + a2 + a3) ̸= x for all a1, a2, a3 ∈ S, where a1, a2, a3

are distinct. Hence 0 = multS(x) = multS′(A(x)). Therefore dS = dS′ ◦ A.

Case 2: Suppose k > 0. Then, there exists distinct points a1, . . . , a3k ∈ S such that x =

ai + a2i + a3i for all i ∈ [k]. This implies

A(x) = A(ai + a2i + a3i) = A(ai) +A(a2i) +A(a3i)
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for all i ∈ [k], so multS(x) ≤ multS′(A(x)). However, we have that multS′(A(x)) ≤

multS(x) by applying the same argument and using A−1. Therefore, multS(x) =

multS′(A(x)), and we deduce dS = dS′ ◦ A.

Thus, S and S′ are ED-equivalent.

So, if any two Sidon sets are affinely equivalent, then they are ED-equivalent. However, the

converse is not true in general, which we show by the following example.

Example 5.2.7. Let F : F25 → F25 be defined by F (x) = x3 for all x ∈ F25 , and let F ′ : F25 →

F25 be defined by F ′(x) = x7 for all x ∈ F25 . Notice that F is a Gold function and F ′ is a Welch

function (see Table 2.2.1). Since F and F ′ are both AB, they are are ED-equivalent. Notice that,

by definition, GF and GF ′ are affinely equivalent if and only if F and F ′ are CCZ-equivalent. By

a result of Dempwolff in [24], since F and F ′ are power functions, they are CCZ-equivalent if and

only if they are cyclotomic equivalent (see Chapter 2). So, it remains to show that 3 ̸≡ 2i · 7−1

mod 31 for all 0 ≤ i < 5. First, notice that 7 · 9 = 63 ≡ 1 mod 31, so 7−1 = 9 over Z31. Now,

we compute 2i · 7−1 ≡ 2i · 9 mod 31 for all 0 ≤ i < 5:

20 · 9 ≡ 9 mod 31

21 · 9 ≡ 18 mod 31

22 · 9 ≡ 5 mod 31

23 · 9 ≡ 10 mod 31

24 · 9 ≡ 20 mod 31.

Thus, 3 ̸≡ 2i · 7−1 mod 31 for all 0 ≤ i < 5, and so F and F ′ are not CCZ-equivalent, implying

that GF and GF ′ are not affinely equivalent.

Definition 5.2.8. Let S be a Sidon set in Fn
2 . Let X and Y be disjoint subsets of Fn

2 \S of the

same size. If there exists a permutation π : X → Y such that dS |X = dS |Y ◦ π, we say that dS

is locally equivalent at X and Y .
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Since AB functions are those whose graph is a (2
n−2
6 )-cover, the graphs of any two AB functions

(with the same dimension) are ED-equivalent. More generally, it is a consequence of the following

proposition that all k-covers in the same dimension are ED-equivalent. The following proposition

is known.

Proposition 5.2.9. Let S be a Sidon set in Fn
2 . The following are equivalent:

1. S is a k-cover,

2. emin(S) = emax(S),

3. dS is constant,

4. dS is locally equivalent at X and Y for all subsets X,Y ⊆ Fn
2 \ S where |X| = |Y |.

Proof. We have that (1) is equivalent to (2) by definition. Also, (3) follows from (2) because

emin(S) = emax(S), then the minimal and maximal values that dS takes coincide, so dS is

constant.

Now, suppose dS is constant and let X,Y ⊆ Fn
2 \ S such that |X| = |Y |. Then for any

permutation π : X → Y , we have dS |X = dS′ |Y ◦ π because dS is constant, so (3) implies (4).

Now, suppose (4) holds. Let X be a subset of Fn
2 \ S consisting of a single point. By our

assumption, dS is locally equivalent at X and any other subset of Fn
2 \ S consisting of a single

point. This implies that all points in Fn
2 \S have the same exclude multiplicity, so S is a k-cover

for some k ∈ N, and we conclude that (4) implies (1).

By Proposition 5.2.9, k-covers naturally impose constraints on the exclude distribution. How-

ever, we will no longer focus on the k-cover case, and we begin to instead study uniformity of

an exclude distribution. Before defining uniform exclude distributions, we first recall that an

equally-sized partition P of a set S is a partition of S such that any two elements in P have

the same size.
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Definition 5.2.10. Let S be a Sidon set in Fn
2 . If P is an equally-sized partition of some set

Z ⊆ Fn
2 \S, then we call dS uniform on P if dS is locally equivalent at any two distinct elements

of P.

We now provide examples of exclude distributions that are uniform on some partition of a

subset of Fn
2 .

Example 5.2.11. Suppose S ⊆ Fn
2 is a k-cover. Let Z ⊆ Fn

2 \ S, and let P be an equally-sized

partition of Z. Then by Proposition 5.2.9, dS is locally equivalent at any two elements of P,

implying dS is uniform on P.

Example 5.2.12. Consider the Sidon set pictured in Figure 5.2.1 and call it S. Let Z be the

highlighted region pictured in Figure 5.2.1. Notice that Z is the union of 6 distinct 4-flats (or

4-dimensional affine subspaces), and let P1, . . . , P6 be these 4-flats. It is then immediately clear

that dS is locally equivalent at any two of these 4-flats. Therefore, dS is uniform on {P1, . . . , P6}.

Figure 5.2.1: A Sidon set in F8
2 whose exclude distribution is uniform on 6 distinct 4-flats (or

4-dimensional affine subspaces).
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5.3 The exclude distribution of GF

In this section, we focus on the exclude distributions of GF where F : Fn
2 → Fn

2 is an APN

function. In particular, we will study the excludes of GF and the open problem on APN functions

and maximal Sidon sets. Furthermore, we prove that the exclude distribution of the graph of

any Gold function is uniform on a particular partition comprised of n-flats.

5.3.1 The maximal Sidon set conjecture for APN functions

Recall that a function F : Fn
2 → Fn

2 is APN if and only if its graph GF is a Sidon set. A Sidon

set S is maximal if S′ ⊇ S for S′ ⊆ Fn
2 Sidon implies S′ = S. It is conjectured that the graphs

of all APN functions are maximal Sidon sets.

Conjecture 5.3.1. [12] [17] The graphs of all APN functions are maximal Sidon sets.

So far, it has been shown that the graphs of all APN power functions and APN plateaued

functions (see Section 5.3.3) have graphs that are maximal Sidon sets [12] [17]. Clearly, the

graph of an APN function F is maximal if and only if dGF
only takes non-zero values, and so the

exclude distribution is also a tool that we can use to study problems such as Conjecture 5.3.1.

Figure 5.3.1: The graph of the Gold function x 7→ x3 over F24 .

It has been known since [45], and perhaps earlier, that sums of subsets of size 3 of GF (i.e.

exclude points) are related to the Fourier-Hadamard transform of W 3
F . The following was shown

in [17], but we will consider it a lemma and provide a proof for the sake of completeness.



60 CHAPTER 5. UNIFORM EXCLUDE DISTRIBUTIONS

Lemma 5.3.2. Let F : Fn
2 → Fn

2 be an APN function. For any (a, b) ∈ (Fn
2 )

2, the sum∑
u,v∈Fn

2
(−1)v·b+u·aW 3

F (u, v) equals

22n|
{
(x1, x2, x3) ∈ (Fn

2 )
3 : (x1 + x2 + x3, F (x1) + F (x2) + F (x3)) = (a, b)

}
|.

Proof. Let (a, b) ∈ (Fn
2 )

2. Then, we have

∑
u,v∈Fn

2

(−1)v·b+u·aW 3
F (u, v) =

∑
u,v∈Fn

2

(−1)v·b+u·a

∑
x∈Fn

2

(−1)u·x+v·F (x)

3

=
∑

x1,x2,x3∈Fn
2

∑
u,v∈Fn

2

(−1)v·(F (x1)+F (x2)+F (x3)+b)+u·(x1+x2+x3+a),

as mentioned by Carlet in [17]. Notice that if x1+x2+x3+a = 0 and F (x1)+F (x2)+F (x3)+b ̸= 0

for some fixed x1, x2, x3, a, b ∈ Fn
2 , then

∑
u,v∈Fn

2

(−1)v·(F (x1)+F (x2)+F (x3)+b)+u·(x1+x2+x3+a) =
∑

u,v∈Fn
2

(−1)v·(F (x1)+F (x2)+F (x3)+b)

= 2n
∑
v∈Fn

2

(−1)v·(F (x1)+F (x2)+F (x3)+b)

= 0

because for any x ∈ (Fn
2 )

∗, the function v 7→ v · x is balanced. Similarly, if x1 + x2 + x3 + a ̸= 0

and F (x1) + F (x2) + F (x3) + b = 0 for some fixed x1, x2, x3, a, b ∈ Fn
2 , then

∑
u,v∈Fn

2

(−1)v·(F (x1)+F (x2)+F (x3)+b)+u·(x1+x2+x3+a) = 0.

Now, consider the case where x1 + x2 + x3 + a ̸= 0 and F (x1) +F (x2) +F (x3) + a ̸= 0 for some

fixed x1, x2, x3, a, b ∈ Fn
2 :

∑
u,v∈Fn

2

(−1)v·(F (x1)+F (x2)+F (x3)+b)+u·(x1+x2+x3+a)

=
∑
u∈Fn

2

(−1)u·(x1+x2+x3+a)
∑
v∈Fn

2

(−1)v·(F (x1)+F (x2)+F (x3)+b)

=
∑
u∈Fn

2

(−1)u·(x1+x2+x3+a) · 0

= 0.
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Therefore, when considering the entire sum, we have the following:

∑
x1,x2,x3∈Fn

2

∑
u,v∈Fn

2

(−1)v·(F (x1)+F (x2)+F (x3)+b)+u·(x1+x2+x3+a)

=
∑

x1,x2,x3∈Fn
2

x1+x2+x3=a
F (x1)+F (x2)+F (x3)=b

∑
u,v∈Fn

2

1

= 22n|
{
(x1, x2, x3) ∈ (Fn

2 )
3 : (x1 + x2 + x3, F (x1) + F (x2) + F (x3)) = (a, b)

}
|.

Corollary 5.3.3. Let F : Fn
2 → Fn

2 be an APN function. If (a, b) ∈ (Fn
2 )

2 \ GF , then

dGF
(a, b) =

1

3 · 22n+1

∑
(u,v)∈(Fn

2 )
2

(−1)v·b+u·aW 3
F (u, v).

Proof. Let (a, b) ∈ (Fn
2 )

2 \ GF . Since b ̸= F (a), we know that

{
(x, y, z) ∈ (Fn

2 )
3 : | {x, y, z} | < 3, (x+ y + z, F (x) + F (y) + F (z)) = (a, b)

}
= ∅.

Hence

dGF
(a, b) =

1

6
|
{
(x, y, z) ∈ (Fn

2 )
3 : | {x, y, z} | = 3, (x+ y + z, F (x) + F (y) + F (z)) = (a, b)

}
|

=
1

6
|
{
(x, y, z) ∈ (Fn

2 )
3 : (x+ y + z, F (x) + F (y) + F (z)) = (a, b)

}
|,

and by applying Lemma 5.3.2, we have

dGF
(a, b) =

1

3 · 22n+1

∑
u,v∈Fn

2

(−1)v·b+u·aW 3
F (u, v).

Carlet used this to show that the graph of APN function F is maximal if and only if for all

(a, b) ∈ (Fn
2 )

2, the inequality
∑

u,v∈Fn
2
(−1)v·b+u·aW 3

F (u, v) ̸= 0 holds.

Remark 5.3.4. If F is APN and the exclude distribution of GF is uniform on some equally-

sized partition P of (Fn
2 )

2, then the inequality holding on an element of the equally-sized par-

tition implies that it holds on all of (Fn
2 )

2. Hence, if dGF
is uniform on P, then GF is a max-

imal Sidon set if and only if there exists P ∈ P such that for all (a, b) ∈ P the inequality∑
u,v∈Fn

2
(−1)v·b+u·aW 3

F (u, v) ̸= 0 holds.
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As Carlet showed in [17], Conjecture 5.3.1 is equivalent to the following conjecture:

Conjecture 5.3.5. [12] Let F : Fn
2 → Fn

2 be an APN function. If F ′ : Fn
2 → Fn

2 is equal to F

except at a single point, then F ′ is not APN.

We will demonstrate a new direct proof to show why these two conjectures are equivalent, but

first, we introduce notation and provide some preliminary results.

Let Px denote the set {x} × Fn
2 = {(x, y) : y ∈ Fn

2} ⊆ (Fn
2 )

2. Consider some vectorial Boolean

function F : Fn
2 → Fn

2 . Clearly, each Px contains a unique point in GF , so we also let Qx(F ) =

Px \ {(x, F (x))}. Also, denote by Q(Fn
2 , F ) and Q∗(Fn

2 , F ) the following partitions of (Fn
2 )

2 and

(Fn
2 )

∗ × Fn
2 , respectively:

Q(Fn
2 , F ) = {Qx(F ) : x ∈ Fn

2} (5.3.1)

Q∗(Fn
2 , F ) = Q(Fn

2 , F ) \Q0(F ). (5.3.2)

When considering the exclude distribution of GF (for F : Fn
2 → Fn

2 APN), we notice that

any exclude point of GF that lies in Qx(F ) is not equal to a sum of three elements of GF that

contains (x, F (x)). That is, any exclude point in Qx(F ) is completely determined by the points

in GF \ {(x, F (x))}.

Lemma 5.3.6. Suppose n > 1. Let F : Fn
2 → Fn

2 be an APN function. Let x ∈ Fn
2 , and let

(a, b) ∈ Qx(F ). Then (a, b) ̸= (x, F (x)) + (y, F (y)) + (z, F (z)) for all y, z ∈ Fn
2 where y ̸= z.

Proof. Let y, z ∈ Fn
2 such that y ̸= z. Since (a, b) ∈ Qx(F ), we have a = x by construction of

Qx(F ). Therefore a+x+y+z = y+z ̸= 0, implying (a, b) ̸= (x, F (x))+(y, F (y))+(z, F (z)).

This leads to the following proposition, which informally speaking states that local exclude

multiplicity is preserved when the respective point in GF is removed.

Proposition 5.3.7. Suppose n > 1. Let F : Fn
2 → Fn

2 be an APN function, and let x ∈ Fn
2 .

Then the multiplicities of all points in Qx(F ) remain unchanged when (x, F (x)) is removed from

GF . Equivalently, dGF
|Qx(F ) = dGF \{(x,F (x))}|Qx(F ).
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Proof. Let (a, b) ∈ Qx(F ), and let k = multGF
(a, b). If k = 0, then clearly multGF \{(x,F (x))}(a, b) =

0 = k. So, suppose k ≥ 1. Then, there exist x1, . . . , x3k ∈ Fn
2 such that

(a, b) = (xi, F (xi)) + (x2i, F (x2i)) + (x3i, F (x3i)).

for all i ∈ [k]. By Lemma 5.3.6, xi ̸= a = x for all i ∈ [3k]. Hence (xi, F (xi)) is in GF \{(x, F (x))}

for all i ∈ [3k]. Thus, multGF \{(x,F (x))}(a, b) = k. Therefore, the restriction maps dGF
|Qx(F ) and

dGF \{(x,F (x))}|Qx(F ) are the same map.

From this, we can quickly show that Conjecture 5.3.1 and Conjecture 5.3.5 are equivalent

conjectures.

Corollary 5.3.8. Let F : Fn
2 → Fn

2 be an APN function. Then GF is maximal if and only

if every function F ′ : Fn
2 → Fn

2 by changing the value of F at a single point is not APN (i.e.

Conjecture 5.3.1 and Conjecture 5.3.5 are equivalent).

Proof. Suppose GF is maximal. Let a ∈ Fn
2 , and let F ′ : Fn

2 → Fn
2 be a function equal to F at all

points except at a, i.e. F (x) = F ′(x) if and only if x ̸= a. Let k be the exclude multiplicity of

(a, F ′(a)). Since GF is maximal, we know k is non-zero. Therefore, by applying Proposition 5.3.7,

we have dGF \{(a,F (a))}(a, F
′(a)) = k. However, since GF \ {(a, F (a))} = GF ′ \ {(a, F ′(a))}, we

deduce dGF ′\{(a,F ′(a))}(a, F
′(a)) = k. Hence (a, F ′(a)) is an exclude point of GF ′ , so GF ′ is not a

Sidon set. Therefore F ′ is not APN.

Conversely, suppose every function obtained by changing the value of F at a single point is

not APN. Let (a, b) ∈ (Fn
2 )

2 such that b ̸= F (a), so (a, b) ∈ Qa(F ). Let F ′ : Fn
2 → Fn

2 be a

function defined by

F ′(x) =

{
b x = a

F (x) x ̸= a.

for all x ∈ Fn
2 . By hypothesis, F ′ is not APN. Hence, GF ′ is not Sidon, but notice that GF ′\{(a, b)}

is Sidon since GF ′ \ {(a, b)} = GF \ {(a, F (a))}. Therefore (a, b) must be an exclude point of

GF \ {(a, F (a))} because

{(a, b)} ∪ (GF \ {(a, F (a))}) = GF ′
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is not Sidon. This directly implies that (a, b) is an exclude point of GF , so we conclude GF is

maximal.

Remark 5.3.9. A consequence of Proposition 5.3.7 is that if F is an APN function such that

multGF
(a, b) = 0, then (a, b) ̸= (x, F (x)) + (y, F (y)) + (z, F (z)) for all x, y, z ∈ Fn

2 \ {a} where

x, y, z are distinct.

Another approach to proving that a Sidon set is maximal is to consider the difference between

its minimal and maximal exclude multiplicities. This is because Proposition 5.2.3 provides a

relation that involves the size of the Sidon set S, emin(S) and emax(S), and also the number

of 0-points in Fn
2 \ S. Informally speaking, if the difference between the minimal and maximal

exclude multiplicities is small enough, then the Sidon set is “dense” which implies that it is

maximal.

Theorem 5.3.10. Suppose n > 1 and S ⊆ Fn
2 is a Sidon set of size 2n. If

emax(S)− emin(S) ≤
2n − 2

6
,

then S is maximal.

Proof. By way of contradiction, suppose S is not maximal. Then implies S has an exclude point

of multiplicity 0, so emin(S) = 0. Hence, emax(S) ≤ 2n−2
6 . By Proposition 5.2.3, we have the

inequality
(
2n

3

)
≤ (22n − 2n − 1)emax(S), and since emax(S) ≤ 2n−2

6 , we have(
2n

3

)
≤ (22n − 2n − 1)

2n − 2

6
.

Observe that this equation is equivalent to

2n(2n − 1)(2n − 2)

6
≤ (22n − 2n − 1)

2n − 2

6
.

Hence, 22n − 2n = 2n(2n − 1) ≤ 22n − 2n − 1, a contradiction. Thus, S is maximal.

For a function F : Fn
2 → Fn

2 , its graph GF has size 2n. So if F is APN and emax(GF )−emin(GF ) ≤

2n−2
6 , then GF is a maximal Sidon set. However, we can describe this in terms of the Walsh
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transform. By Corollary 5.3.3, we know that emax(GF )− emin(GF ) is equal to

max
(a,b)∈(Fn

2 )
2\GF

1

3 · 22n+1

∑
u,v∈Fn

2

(−1)v·b+u·aW 3
F (u, v)− min

(c,d)∈(Fn
2 )

2\GF

1

3 · 22n+1

∑
u,v∈Fn

2

(−1)v·d+u·cW 3
F (u, v).

By applying Theorem 5.3.10, we have the following.

Corollary 5.3.11. Suppose n > 1, and suppose F : Fn
2 → Fn

2 is an APN function. If∣∣∣∣∣∣∣∣
∑

u,v∈Fn
2

u·(a+c)̸=v·(b+d)

(−1)v·b+u·aW 3
F (u, v)

∣∣∣∣∣∣∣∣ ≤ 23n−1 − 22n, (5.3.3)

holds for all (a, b), (c, d) ∈ (Fn
2 )

2 \ GF , then GF is maximal.

Proof. Suppose eq. (5.3.3) holds. Notice that for any (a, b), (c, d) ∈ (Fn
2 )

2 such that b ̸= F (a)

and d ̸= F (c), we have

dGF
(a, b)− dGF

(c, d) =
1

3 · 22n+1

 ∑
u,v∈Fn

2

(−1)v·b+u·aW 3
F (u, v)−

∑
u,v∈Fn

2

(−1)v·d+u·cW 3
F (u, v)


by Corollary 5.3.3. By simplifying the right-hand side of the equation above, we have

dGF
(a, b)− dGF

(c, d) =
1

3 · 22n+1

∑
u,v∈Fn

2

(
(−1)v·b+u·a − (−1)v·d+u·c

)
W 3

F (u, v)

=
1

3 · 22n+1

∑
u,v∈Fn

2
u·(a+c)̸=v·(b+d)

(
(−1)v·b+u·a − (−1)v·d+u·c

)
W 3

F (u, v)

=
1

3 · 22n
∑

u,v∈Fn
2

u·(a+c) ̸=v·(b+d)

(−1)v·b+u·aW 3
F (u, v)

for any (a, b), (c, d) ∈ (Fn
2 )

2 where b ̸= F (a) and d ̸= F (c). Therefore,

max
a,b,c,d∈Fn

2
b ̸=F (a),d ̸=F (c)

|dGF
(a, b)− dGF

(c, d)| = 1

3 · 22n
max

a,b,c,d∈Fn
2

b ̸=F (a),d ̸=F (c)

∣∣∣∣∣∣∣∣
∑

u,v∈Fn
2

u·(a+c) ̸=v·(b+d)

(−1)v·b+u·aW 3
F (u, v)

∣∣∣∣∣∣∣∣
≤ 23n−1 − 22n

3 · 22n

=
2n − 2

6
.

This implies that emax(GF )− emin(GF ) ≤ 2n−2
6 , so GF is maximal by Theorem 5.3.10.
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Therefore, those APN functions satisfying the condition in Corollary 5.3.11 have graphs that

are maximal. Note, however, that Corollary 5.3.11 does not state that all APN functions whose

graph is a maximal Sidon set also satisfy inequality (5.3.3). Both of these results imply that an

APN function whose graph is non-maximal must have an exclude point of multiplicity greater

than 2n−2
6 . While there are many APN functions whose graphs have exclude points with mul-

tiplicity greater than 2n−2
6 (e.g. the Dobbertin function when n = 5), all of our computed

examples (mostly low-dimensional examples of power functions and some quadratics) have sat-

isfied the inequalities from Theorem 5.3.10 and Corollary 5.3.11. It would be interesting to

find a subclass of APN functions that always satisfy this bound on the difference between the

maximal and minimal exclude multiplicities of their graphs, and therefore, a subclass of APN

functions whose graphs are maximal.

We conjecture that if F : F2n → F2n is an APN power function F (x) = xd, then the exclude

distribution of GF is constant on Q0(F ) with value 2n−2
6 . Clearly, all AB functions satisfy this

conjecture, since if F is AB, then dGF
is constant on Q0(F ) with constant value 2n−2

6 . However,

all of our computed examples of APN power functions (including those that are not AB) have

aligned with this conjecture.

Conjecture 5.3.12. Suppose n is odd. Let F : F2n → F2n be a power function F (x) = xd. If F

is APN, then dGF
is constant on Q0(F ) with value 2n−2

6 .

We also make a very similar conjecture about APN power functions.

Conjecture 5.3.13. Suppose n is odd. Let F : F2n → F2n be a power function F (x) = xd. If F

is APN, then dGF
(a, 0) = 2n−2

6 for all a ∈ (Fn
2 )

∗.

In the case that n is even, 2n − 2 is not divisible by 6, so the conjectures above can only hold

for n odd. Since APN power functions over F2n are bijective when n is odd, one may be led to

believe that dGF
being constant on Q0(F ) is related to being an APN permutation. However,

this is untrue due to the following example.
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Example 5.3.14. Recall Browning, Dillion, McQuistan, and Wolfe’s APN permutation over

F6
2, call it F (see page 18). We picture the graph of F in Figure 5.3.2. By direct observation,

we see that dGF
does not take a constant value on Q0(F ). On another note, we also can directly

observe that dGF
is uniform on Q(F6

2, F ).
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Figure 5.3.2: The graph of the only known example of an APN permutation over an even
dimension.

Next, we provide many examples of APN functions that are not AB in which the exclude

distributions of their graphs are uniform on Q(Fn
2 , F ) or Q∗(Fn

2 , F ), see Table 5.3.1. In other
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words, all functions listed in Table 5.3.1 are not AB and they also have graphs whose exclude

distribution is uniform on Q(Fn
2 , F ) or Q∗(Fn

2 , F ).

n Function dGF
uniform on Q(Fn

2 , F ) dGF
uniform on Q∗(Fn

2 , F )

4 Gold True True
4 x3 + a−1 trn(a

3x9) True True
5 Inverse False True
5 Dobbertin False True
6 Gold True True
6 x3 + a−1 trn(a

3x9) True True
6 x3 + a−1 tr3n(a

3x9 + a6x18) True True
6 From example 5.3.14 True True
7 Inverse False True
8 Gold True True
8 x3 + a−1 trn(a

3x9) True True
9 Inverse False True
10 Gold True True
10 Dobbertin False True
10 x3 + a−1 trn(a

3x9) True True

Table 5.3.1: APN functions whose graph has a uniform exclude distribution on Q(Fn
2 , F ) or

Q∗(Fn
2 , F ), excluding AB functions.

One interesting fact is that the Dobbertin (pictured in Figure 5.3.3) and Inverse functions

computed in Table 5.3.1 have graphs GF where dGF
is not uniform on Q(Fn

2 , F ) but dGF
is

uniform on Q∗(Fn
2 , F ). We are unsure as to why this is, but it is clear that being uniform on

Q∗(Fn
2 , F ) is very common, and this leads us to the following conjecture.

Conjecture 5.3.15. Let F : Fn
2 → Fn

2 be a function. If F is APN, then dGF
is uniform on

Q∗(Fn
2 , F ).

These conjectures may be very hard to prove due to the very unpredictable nature and history

of false conjectures on APN functions. However, we believe that the majority of APN functions

(if not all) have graphs whose exclude distributions are uniform on Q∗(Fn
2 , F ). This possibly

has consequences on the maximality of GF since uniformity implies a periodicity in dGF
.

Remark 5.3.16. Let F : Fn
2 → Fn

2 be APN such that dGF
is uniform on Q∗(Fn

2 , F ). Suppose

that (a, b) ∈ Qx(F ) has exclude multiplicity 0 where x ̸= 0. T1hen there are at least 2n − 1

points of exclude multiplicity 0 in (Fn
2 )

2 \ GF .
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Figure 5.3.3: The graph of the Dobbertin function and its exclude distribution where n = 5.

5.3.2 The Gold function

While it may be difficult to prove Conjecture 5.3.15 in general, we are able to prove something

even stronger in the case of the Gold function. We will prove that all Gold functions F : F2n →

F2n have graphs whose exclude distributions are uniform on Q(F2n , F ). See Figure 5.3.1 for an

example.

Recall that when n is odd, any Gold function F : F2n → F2n is AB, and so dGF
is uniform on

Q(F2n , F ). What makes the Gold function particularly interesting is that this still holds when

n is even. To prove that the exclude distribution of the graph of any Gold function is uniform

on Q(F2n , F ), we need to prove that dGF
is locally equivalent at any two elements of Q(F2n , F ).

This involves providing permutations that satisfy our condition of local equivalence on dGF
.
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Lemma 5.3.17. Let k, n ∈ N, and suppose gcd(k, n) = 1. Let F : F2n → F2n be the Gold

function given by F (x) = x2
k+1. For any a, α ∈ F2n, let πa,α : Qa(F ) → Qα(F ) be defined by

π(a, b) = (α, b+ F (a) + F (α)). Then dGF
|Qa(F ) = dGF

|Qα(F ) ◦ πa,α for all a, α ∈ F2n.

Proof. Let a, α ∈ F2n , and let (a, b) ∈ Qa(F ). Observe that b ̸= a by construction, so b+F (a)+

F (c) ̸= F (c). We will show that (x1, x2, x3) ∈ F3
2n is a solution to the system of equations

{
x1 + x2 + x3 = a

F (x1) + F (x2) + F (x3) = b
(5.3.4)

if and only if (w1, w2, w3) is a solution to the system of equations

{
w1 + w2 + w3 = α

F (w1) + F (w2) + F (w3) = β.
(5.3.5)

where wi = xi + a + α for i ∈ [3] and β = b + F (a) + F (α). Observe that if (x1, x2, x3) ∈ F3
2n

satisfies the system of equations in eq. (5.3.4), then

w1 + w2 + w3 =
3∑

i=1

(xi + a+ α)

=

3∑
i=1

(xi + x1 + x2 + x3 + α)

= 4(x1 + x2 + x3) + 3α

= α
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and

F (w1) + F (w2) + F (w3) =
3∑

i=1

(xi + a+ α)2
k+1

=
3∑

i=1

(x2
k

i + a2
k
+ α2k)(xi + a+ α)

=

3∑
i=1

(x2
k+1

i + ax2
k

i + αx2
k

i + a2
k
xi + a2

k+1 + a2
k
α+ α2kxi + aα2k + α2k+1)

= x2
k+1

1 + x2
k+1

2 + x2
k+1

3 + a2
k+1 + α2k+1

+
3∑

i=1

(ax2
k

i + αx2
k

i + a2
k
xi + a2

k
α+ α2kxi + aα2k)

= b+ a2
k+1 + α2k+1 +

3∑
i=1

(ax2
k

i + αx2
k

i + a2
k
xi + a2

k
α+ α2kxi + aα2k)

= b+ a2
k+1 + α2k+1 + a(x1 + x2 + x3)

2k + α(x1 + x2 + x3)
2k

+ a2
k
(x1 + x2 + x3) + α2k(x1 + x2 + x3) + a2

k
α+ aα2k

= b+ a2
k+1 + α2k+1 + a2

k+1 + a2
k
α+ a2

k+1 + aα2k + a2
k
α+ aα2k

= b+ a2
k+1 + α2k+1

= β.

Conversely, if (w1 = x1+a+α,w2 = x2+a+α,w3 = x3+a+α) is a solution to eq. (5.3.5), then

(x1, x2, x3) is a solution to eq. (5.3.4). Thus, dGF
(a, b) = dGF

(α, b+F (a)+F (α)), as desired.

Our main theorem then follows as a corollary to Lemma 5.3.17.

Theorem 5.3.18. Let k, n ∈ N, and suppose gcd(k, n) = 1. Let F : F2n → F2n be the Gold

function given by F (x) = x2
k+1. Then dGF

is uniform on Q(F2n , F ).

Proof. By Lemma 5.3.17, dGF
is locally equivalent at Qa and Qα for any Qa, Qα ∈ Q(F2n , F ).

Thus, dGF
is uniform on Q(F2n , F ).

Therefore, the Gold function always exhibits symmetry in its excludes. The following is

another corollary to Lemma 5.3.17.
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Corollary 5.3.19. Let k, n ∈ N, and suppose gcd(k, n) = 1. Let F : F2n → F2n be the Gold

function given by F (x) = x2
k+1. Then, for any a, α, b ∈ F2n such that b ̸= F (a), the equality

∑
(u,v)∈F2

2n

(−1)trn(ua+vb)W 3
F (u, v) =

∑
(u,v)∈F2

2n

(−1)trn(uα+v(b+a2
k+1+α2k+1))W 3

F (u, v)

holds. Equivalently,

∑
(u,v)∈F2

2n

trn(u(a+α)+v(a2
k+1+α2k+1)) ̸=0

(−1)trn(vb)+trn(ua)W 3
F (u, v) = 0.

for any a, α, b ∈ F2n such that b ̸= F (a).

Proof. Recall from Corollary 5.3.3 that dGF
(a, b) = 1

3·22n+1

∑
(u,v)∈F2

2n
(−1)trn(vb)+trn(ua)W 3

F (u, v)

for all (a, b) ∈ F2
2n \ GF . Therefore, for any (a, b), (c, d) ∈ F2

2n \ GF , we know that dGF
(a, b) =

dGF
(c, d) if and only if

∑
u,v∈Fn

2
(−1)trn(vb)+trn(ua)W 3

F (u, v) =
∑

u,v∈Fn
2
(−1)v·d+u·cW 3

F (u, v).

By Lemma 5.3.17, we know that dGF
(a, b) = dGF

(α, b+F (a)+F (α)) for all a, α, b ∈ F2n such

that b ̸= F (a). Therefore,

∑
(u,v)∈F2

2n

(−1)trn(ua+vb)W 3
F (u, v) =

∑
(u,v)∈F2

2n

(−1)trn(uα+v(b+a2
k+1+α2k+1))W 3

F (u, v) (5.3.6)

for any a, α, b ∈ F2n such that b ̸= F (a). By rearrangement, eq. (5.3.6) becomes

∑
(u,v)∈F2

2n

(−1)trn(ua+vb)W 3
F (u, v)−

∑
(u,v)∈F2

2n

(−1)trn(uα+v(b+a2
k+1+α2k+1))W 3

F (u, v) = 0. (5.3.7)

By the same reasoning used in the proof of Corollary 5.3.11, we know that eq. (5.3.7) is equivalent

to

∑
(u,v)∈F2

2n

trn(u(a+α)+v(a2
k+1+α2k+1)) ̸=0

(−1)trn(vb)+trn(ua)W 3
F (u, v) = 0,

as desired.

We will now explore the properties of the local permutations (a, b) 7→ (α, b+F (a)+F (c)) for

any two Qa, Qα ∈ Q(F2n , F ) where F is a Gold function. We start with the following example.

Consider the graph of the Gold function x 7→ x3 which is in F2
24 , pictured in Figure 5.3.1. In
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(a) P0 (b) P1

Figure 5.3.4: The distinct affine flats P0 and P1 from Figure 5.3.1.

particular, consider P0, P1 ⊆ F2
2n , pictured in Figure 5.3.4 Observe that we can transform P0

by switching the columns with indices 0 and 1 and those with 1 and 2, and this transformation

results in P1. Note that there are no row transpositions involved in this transformation since

F (0) and F (1) are in rows with equal indices.

One can generalize and show that there exist transformations from Pa and Pα consisting

of only row transpositions and column transpositions that preserve the multiplicity of exclude

points of GF where F : F2n → F2n is a Gold function. A transformation that does this is

b 7→ b + F (a) + F (α), which is one of the component functions of πa,α where πa,α is as in

Lemma 5.3.17.

5.3.3 APN plateaued functions

Previously, we showed that all Gold functions F have graphs whose exclude distribution is

uniform on Q(F2n , F ), and in this section, we generalize this result. In particular, we will prove

that all APN plateaued functions whose component functions are all unbalanced have graphs

whose exclude distributions are uniform on such partition.

As mentioned in the introduction to Section 5.3.1, it has been proven that all APN plateaued

functions have maximal Sidon sets as their graphs. In fact, most of the known classes of APN

functions are also plateaued functions [12]. We now recall the following definitions.

Definition 5.3.20. Let f : Fn
2 → F2 be a Boolean function. We call f plateaued if there exists

a positive integer λ such that Wf (a) ∈ {0,±λ} for all a ∈ Fn
2 .
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Definition 5.3.21. Let F : Fn
2 → Fm

2 be a vectorial Boolean function. We call F plateaued if

all component functions b · F are plateaued.

In the case where n = m, a function F : Fn
2 → Fm

2 is plateaued if and only if, for every v ∈ Fn
2 ,

there exists λv ≥ 0 such that WF (u, v) ∈ {0,±λv} for all u ∈ Fn
2 [17]. All APN plateaued

functions are also AB if n is odd.

We will now prove a lemma, which was first shown to be true in the proof of Corollary 3 from

[17]. Originally, Carlet used this fact to show that any APN plateaued function F : Fn
2 → Fn

2

whose component functions are unbalanced satisfies imF + imF = Fn
2 . However, we use this

fact to show that all APN plateaued functions F whose component functions are unbalanced

have graphs whose exclude distributions are uniform on Q(Fn
2 , F ).

Lemma 5.3.22. [17] Let F : Fn
2 → Fn

2 be a function. If F is an APN plateaued function whose

component functions are all unbalanced, then the following equality holds for every (a, b) ∈ (Fn
2 )

2:

∑
(u,v)∈(Fn

2 )
2

(−1)v·b+u·aW 3
F (u, v) = 22n|

{
(x, y) ∈ (Fn

2 )
2 : F (x) + F (y) + F (a) = b

}
|.

The following is from the proof of Corollary 3 in [17].

Proof. Suppose F is APN and that the component functions v · F of F are unbalanced. Then

WF (0, v) ̸= 0 for all v ∈ Fn
2 . Since WF (u, v) ∈ {0,±λv} for every u ∈ Fn

2 , we know that

W 3
F (u, v) = W 2

F (0, v)WF (u, v), for all (u, v) ∈ (Fn
2 )

2. Therefore,

∑
(u,v)∈(Fn

2 )
2

(−1)v·b+u·aW 3
F (u, v) =

∑
(u,v)∈(Fn

2 )
2

(−1)v·b+u·aWF (u, v)W
2
F (0, v)

=
∑
v∈Fn

2

(−1)v·bW 2
F (0, v)

∑
u∈Fn

2

(−1)u·aWF (u, v)


= 2n

∑
v∈Fn

2

(−1)v·bW 2
F (0, v)(−1)v·F (a)

= 2n
∑

v,x,y∈Fn
2

(−1)v·(b+F (x)+F (y)+F (a))

= 22n|
{
(x, y) ∈ (Fn

2 )
2 : F (x) + F (y) + F (a) = b

}
|.
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By what we have already seen, the above Lemma provides a relation between the exclude

multiplicity of a point (a, b) ∈ (Fn
2 )

2 \ GF to the size of the set

{
(x, y) ∈ (Fn

2 )
2 : F (x) + F (y) + F (a) = b

}
.

We will see that this implies all APN plateaued functions F whose component functions are all

unbalanced have graphs whose exclude distributions are uniform on Q(Fn
2 , F ), a highly symmet-

ric property.

Theorem 5.3.23. If F : Fn
2 → Fn

2 is an APN plateaued function whose component functions

are all unbalanced, then dGF
is uniform on Q(Fn

2 , F ).

Proof. Suppose that F is an APN plateaued function whose component functions are all unbal-

anced. Then by Corollary 5.3.3 and Lemma 5.3.22, for any (a, b) ∈ (Fn
2 )

2 \ GF we have

dGF
(a, b) =

1

3 · 22n+1

∑
(u,v)∈Fn

2

(−1)v·b+u·aW 3
F (u, v)

=
1

6
|
{
(x, y) ∈ (Fn

2 )
2 : F (x) + F (y) + F (a) = b

}
|.

Let a, α, b ∈ Fn
2 such that b ̸= F (a), and set β = b+F (a)+F (α). Then β ̸= F (α), so (α, β) /∈ GF .

Therefore

dGF
(a, b) =

1

6
|
{
(x, y) ∈ (Fn

2 )
2 : F (x) + F (y) + F (a) = b

}
|

=
1

6
|
{
(x, y) ∈ (Fn

2 )
2 : F (x) + F (y) + F (α) = b+ F (a) + F (α)

}
|

=
1

6
|
{
(x, y) ∈ (Fn

2 )
2 : F (x) + F (y) + F (α) = β

}
|

= dGF
(α, β).

We then know that the permutation πa,α : Qa(F ) → Qα(F ) given by (a, b) 7→ (α, b+F (a)+F (α))

satisfies dGF
|Qa(F ) = dGF

|Qα(F ) ◦ πa,α, implying dGF
is uniform on Q(Fn

2 , F ), as desired.

Finding more families of APN functions F : Fn
2 → Fn

2 whose graphs admit an exclude distri-

bution that is uniform on the partition Q(Fn
2 , F ) may prove to be difficult. In summary, we

have shown that AB functions and APN plateaued functions whose component functions are
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unbalanced both satisfy this property. It would be very interesting to classify all APN functions

that admit such a graph. Additionally, it would be interesting to classify all APN functions that

do the same for Q∗(Fn
2 , F ).



6
Computational representation

In this chapter, we discuss abstractly representing the mathematical objects we have seen in

previous chapters, and we provide the code that was created and used in this research. More

specifically, we provide multiple parts of our code that represent vectorial Boolean functions,

power functions over F2n , the Kneser graph of all translations of GF for F : Fn
2 → Fn

2 , and Sidon

sets in Fn
2 . As we will see in this chapter, while many of the questions that we have asked in

previous chapters can be computed in finite time (for a given dimension), we run into the issue

of high computational complexity (typically exponential) in most cases.

6.1 Computationally representing vectorial Boolean functions

In this section, we discuss how we represent vectorial Boolean functions, the case of power

functions over F2n , and polynomials over F2n . Our approach is to construct a parent class called

VBF, and this parent class will serve as an abstract representation of what a vectorial Boolean

function is. Note that we will be working completely in Python, unless otherwise stated.

We identify Fn
2 with F2n , so we assume all such functions are over a finite field. In order to

work over finite fields, we use the pyfinite package, which will be our primary tool for working

over finite fields (see [35]). To create a field in pyfinite , we simply can do the following,

1 from py f i n i t e import f f i e l d
2 f i e l d = f f i e l d . FField (n)

77
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where n is some positive integer.

6.1.1 Abstract vectorial Boolean functions

Recall that a vectorial Boolean function is simply a function from Fn
2 to Fn

2 . Hence, representing

vectorial Boolean functions F : Fn
2 → Fn

2 can be done quite naturally since F is, in short, a map

sending bitstrings to bitstrings. When working in pyfinite , we treat elements of Fn
2 as elements

of F2n .

For representing a function F : Fn
2 → Fn

2 , we create a VBF class, which defines a vectorial

Boolean function to be a lambda function along with an instance of a field. For example, the

identity function can be written as id fcn = VBF(field, lambda x: x). Depending on the complexity

of the given lambda function, it is only sensible to allow for caching, that is, we can store com-

puted values of a given vectorial Boolean function in a dictionary to reduce future computations

to O(1) runtime. One can enable caching by setting the use caching optional parameter to True.

Also, if we know ahead of time whether the given function is APN or AB, we are able to pass this

parameter to the VBF object to prevent redundancy. We now provide our object representation

of vectorial Boolean functions.

Listing 6.1: Representing a vectorial Boolean function in Python.

1 class VBF:
2 def i n i t ( s e l f , f i e l d , funct ion , u se cach ing=True , apn=None , ab=None ) :
3 s e l f . f i e l d = f i e l d
4 s e l f . n = f i e l d . n
5 s e l f . f unc t i on = func t i on
6 s e l f . u s e cach ing = use cach ing
7 i f use cach ing :
8 s e l f . cache = {}
9 s e l f . apn = apn

10 s e l f . ab = ab
11

12 def app ly func t i on ( s e l f , x ) :
13 i f s e l f . u s e cach ing :
14 i f x in s e l f . cache :
15 return s e l f . cache [ x ]
16 else :
17 s e l f . cache [ x ] = s e l f . f unc t i on (x )
18 return s e l f . cache [ x ]
19 return s e l f . f unc t i on (x )
20

21 def walsh spectrum ( s e l f ) :
22 t o r e tu rn = set ( )
23 for a in range (2 ∗∗ s e l f . n ) :
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24 for b in range (1 , 2 ∗∗ s e l f . n ) :
25 t o r e tu rn . add ( walsh ( s e l f , a , b , s e l f . f i e l d ) )
26 return t o r e tu rn
27

28 def i s apn ( s e l f ) :
29 i f s e l f . apn i s not None :
30 return s e l f . apn
31 n = s e l f . n
32 for a in range (1 , 2 ∗∗ n) :
33 s o l r ang e = set ( )
34 for x in range (0 , 2 ∗∗ n) :
35 s o l r ang e . add ( s e l f . app ly func t i on (x ) ˆ s e l f . app ly func t i on (x ˆ

a ) )
36 i f len ( s o l r ang e ) != 2 ∗∗ (n − 1) :
37 s e l f . apn = False
38 return False
39 s e l f . apn = True
40 return True
41

42 def i s a b ( s e l f ) :
43 # AB func t i on s cannot e x i s t in even dimensions ( Canteaut , Charpin , and

Dobbertin , ’99)
44 i f s e l f . ab i s not None :
45 return s e l f . ab
46 n = s e l f . n
47 i f n % 2 == 0 :
48 return False
49 m = 2 ∗∗ ( ( n + 1) / 2)
50 return s e l f . walsh spectrum ( ) == {0 , −m, m}
51

52

53 def i s pe rmutat i on ( s e l f ) :
54 output = set ( )
55 for x in range (2 ∗∗ s e l f . n ) :
56 e v a l a t x = s e l f . app ly func t i on (x )
57 i f e v a l a t x in output :
58 return False
59 output . add ( e v a l a t x )
60 return True
61

62 def i s p l a t e au ed ( s e l f ) :
63 for v in range (2 ∗∗ s e l f . n ) :
64 outputs = {walsh ( s e l f , u , v , s e l f . f i e l d ) for u in range (2 ∗∗ s e l f .

n ) }
65 i f len ( outputs ) < 3 or ( len ( outputs ) == 3 and 0 in outputs and min

( outputs ) == −max( outputs ) ) :
66 continue
67 return False
68 return True
69

70 def a l l component func t i ons unba lanced ( s e l f ) :
71 for v in range (1 , 2 ∗∗ s e l f . n ) :
72 i f walsh ( s e l f , 0 , v , s e l f . f i e l d ) == 0 :
73 return False
74 return True
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To verify if F : Fn
2 → Fn

2 is APN, we compute the sizes of the sets imDaF for all a ∈ (Fn
2 )

∗.

It is equivalent to say that F is APN if and only if | imDaF | = 2n−1 for all a ∈ (Fn
2 )

∗. The

algorithm we use is O(2n(2n − 1)) = O(22n), but it would be desirable to increase the speed of

this, especially for examples in higher dimensions.

To compute whether or not a function F : Fn
2 → Fn

2 is AB, we compute the Walsh spectrum,

the set of all possible values of WF (a, b) where b ̸= 0, and verify that it is equal to
{
0,±2

n+1
2

}
.

Similar to before, this algorithm runs in O(n2) time, but we believe it to be difficult to find a

faster generic algorithm.

The VBF class also has a method for seeing if a vectorial Boolean function is plateaued or

not. This involves only simply checking if F satisfies the definition provided in Chapter 5 on

plateaued functions. Also, to see if all the component functions v · F , v ̸= 0, are unbalanced, it

is sufficient to check if WF (0, v) ̸= 0 because WF (0, v) =
∑

x∈Fn
2
(−1)v·F (x).

6.1.2 The power function case

We now consider functions F : F2n → F2n of the form F (x) = xd. Recall from Table 2.2.1 that

there are very few known families of APN power functions over F2n .

Since most of our known examples are with d large, it is wise to use a fast exponentiation

algorithm. We use an algorithm that computes xd in O(log d) operations, and this algorithm is

often referred to as “exponentiation by squaring” (see [21, Ch. 9]).

Listing 6.2: Exponentiation by squaring in F2n .

1 def f i e l d e x p (x , exp , f i e l d ) :
2 ’ ’ ’
3 Computes an exponent i a l power . Runs in l oga r i thmi c time .
4 : param x : the base o f the exponent
5 : param exp : the power to r a i s e x to
6 : param f i e l d : the f i e l d x be longs in
7 : r e turn : the r e s u l t o f xˆ{ exp}
8 ’ ’ ’
9

10 a = x
11 d = exp
12

13 # Base Cases
14 i f a == 0 :
15 return 0
16 i f d < 0 :
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17 a = f i e l d . Inve r s e ( a )
18 d = −d
19 i f d == 0 :
20 return 1
21

22 y = 1
23 while d > 1 :
24 i f d % 2 == 1 :
25 y = f i e l d . Mult ip ly ( a , y )
26 d −= 1
27 a = f i e l d . Mult ip ly ( a , a )
28 d = d / 2
29 return f i e l d . Mult ip ly ( a , y )

We now provide our abstract representation of power functions over F2n in Python.

Listing 6.3: Representing a power function over F2n .

1 class PowerVBF(VBF) :
2 ”””
3 Represents a func t i on F from GF(2ˆn) to i t s e l f o f the form F(x ) = xˆd .
4 This i s known as a power v e c t o r i a l Boolean func t i on .
5 ”””
6

7 def i n i t ( s e l f , exponent , f i e l d , u se cach ing=True , apn=None , ab=None ) :
8 super ( ) . i n i t ( f i e l d , lambda x : f i e l d e x p (x , int ( exponent ) , f i e l d ) ,

use cach ing , apn , ab )
9 s e l f . exponent = int ( exponent )

10

11 def a l g e b r a i c d e g r e e ( s e l f ) :
12 ”””
13 Computes the a l g e b r a i c degree o f t h i s func t i on .
14 Since t h i s i s a v e c t o r i a l Boolean power funct ion , the a l g e b r a i c degree

i s the 2−weight o f the exponent .
15 : r e turn : The a l g e b r a i c degree o f F .
16 ”””
17 return bin ( s e l f . exponent ) . count ( ’ 1 ’ )
18

19 def get exponent ( s e l f ) :
20 ”””
21 Get d where F(x ) = xˆd .
22 : r e turn : The exponent o f t h i s power func t i on .
23 ”””
24 return s e l f . exponent
25

26 def walsh spectrum ( s e l f ) :
27 # Since F i s a power funct ion , i t s u f f i c e s to compute f o r a =0,1 and b

\neq 0
28 # because W F(a , b) = W F(1 , aˆ{−d} b) f o r a \neq 0 .
29 t o r e tu rn = set ( )
30 for a in range (2 ) :
31 for b in range (1 , 2 ∗∗ s e l f . n ) :
32 t o r e tu rn . add ( walsh ( s e l f , a , b , s e l f . f i e l d ) )
33 return t o r e tu rn
34

35 def cy c l o t om i c equ i va l en t ( s e l f , power vb f func t i on ) :
36 d1 = s e l f . get exponent ( )
37 d2 = power vb f func t i on . get exponent ( )
38 n = s e l f . n
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39 i f math . gcd (d1 , int (2 ∗∗ n) − 1) == 1 :
40 # This i s the case when F i s a permutation
41 for i in range (n) :
42 i f ( d2 == ( i ∗ d1 ) % ( int (2 ∗∗ n) − 1)
43 or ( d1 ∗ d2 ) % ( int (2 ∗∗ n) − 1) == int (2 ∗∗ i ) ) :
44 return True
45 else :
46 for i in range (n) :
47 i f d2 == (( i ∗ d1 ) % ( int (2 ∗∗ n) − 1) ) :
48 return True
49

50 return False

Notice that we include a method for checking if two APN power functions are cyclotomic

equivalent. This is particularly useful because if two APN power functions are cyclotomic

equivalent, then they are also CCZ equivalent because of Dempwolff’s result from [24]. In

general, computing if two APN functions are CCZ equivalent is quite difficult, but this result

allows the power function case to be easily computed.

6.1.3 Common examples of APN functions

We now provide methods for creating the APN functions listed in Table 2.2.1, the APN per-

mutation over F26 discussed on page 18 which we refer to as “Dillon’s permutation”, and the

following two additional quadratic APN functions:

Function Condition Reference

x3 + a−1 trn(a
3x9) a ̸= 0 [13]

x3 + a−1 tr3n(a
3x9 + a6x18) 3|n, a ̸= 0 [14]

Table 6.1.1: Two quadratic APN functions F2n → F2n .

Listing 6.4: Methods to generate APN functions.

1 def gold ( f i e l d , k=1, f i n d n o n t r i v i a l k=False , u s e cach ing=True ) :
2 n = f i e l d . n
3 a s s e r t math . gcd (n , k ) == 1
4 i f f i n d n o n t r i v i a l k :
5 # k can always be taken l e s s than n/2 due to conjugacy [ c . f . Car let ,

Picek ]
6 for l in range (2 , n // 2 + 1) :
7 i f math . gcd (n , l ) == 1 :
8 k = l
9 break

10 d = int (2 ∗∗ k ) + 1
11 return PowerVBF(d , f i e l d , use cach ing , apn=True , ab=(n % 2 == 1) )
12

13
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14 def kasami ( f i e l d , k=1, f i n d n o n t r i v i a l k=False , u s e cach ing=True ) :
15 n = f i e l d . n
16 k exp = k
17 i f f i n d n o n t r i v i a l k :
18 # k can always be taken l e s s than n/2 due to conjugacy
19 # See ”On the exponents o f APN power f unc t i on s and Sidon se t s ,
20 # sum−f r e e s e t s , and Dickson polynomia l s ” by Carlet , Picek ) .
21 for l in range (2 , n // 2 + 1) :
22 i f math . gcd (n , l ) == 1 :
23 k exp = l
24 exp = int (2 ∗∗ (2 ∗ k exp ) ) − int (2 ∗∗ k exp ) + 1
25 return PowerVBF( exp , f i e l d , use cach ing , apn=True , ab=(n % 2 == 1) )
26

27

28 def welch ( f i e l d , u se cach ing=True ) :
29 n = f i e l d . n
30 a s s e r t n % 2 == 1
31 m = (n − 1) / 2
32 exp = int (2 ∗∗ m) + 3
33 return PowerVBF( exp , f i e l d , use cach ing , apn=True , ab=True )
34

35

36 def niho ( f i e l d , u se cach ing=True ) :
37 n = f i e l d . n
38 a s s e r t n % 2 == 1
39 t = (n − 1) // 2
40 i f t % 2 == 0 :
41 d = int (2 ∗∗ t + 2 ∗∗ ( t / 2) − 1)
42 else :
43 d = int (2 ∗∗ t + 2 ∗∗ ( (3 ∗ t + 1) / 2) − 1)
44 return PowerVBF(d , f i e l d , use cach ing , apn=True , ab=True )
45

46

47 def i n v e r s e ( f i e l d ) :
48 n = f i e l d . n
49 a s s e r t f i e l d . n % 2 == 1
50 m = (n − 1) / 2
51 return PowerVBF( int (2 ∗∗ (2 ∗ m) ) − 1 , f i e l d , u se cach ing=True , apn=True ,

ab=False )
52

53

54 def dobbert in ( f i e l d , u s e cach ing=True ) :
55 n = f i e l d . n
56 a s s e r t n % 5 == 0
57 t = n / 5
58 d = int (2 ∗∗ (4 ∗ t ) + 2 ∗∗ (3 ∗ t ) + 2 ∗∗ (2 ∗ t ) + 2 ∗∗ t − 1)
59 return PowerVBF(d , f i e l d , use cach ing , apn=True , ab=False )
60

61

62 def quadrat ic CCZ inquiv to power ( f i e l d , a=1, use cach ing=True ) :
63 ”””
64 This func t i on i s i nqu i va l en t to any Gold func t i on f o r n >= 7 , and f o r n=7,

i t ’ s i n equ i va l en t to any power mapping .
65 : param f i e l d :
66 : param a :
67 : param use cach ing :
68 : r e turn :
69 ”””
70 a s s e r t a != 0
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71 a inv = f i e l d . Inve r s e ( a )
72 a3 = f i e l d e x p (a , 3 , f i e l d )
73 t r a c e o f a 3x9 = lambda x : (
74 t r a c e ( f i e l d . Mult ip ly ( a3 , f i e l d e x p (x , 9 , f i e l d ) ) , f i e l d ) )
75 f cn = lambda x : ( f i e l d e x p (x , 3 , f i e l d ) ˆ
76 f i e l d . Mult ip ly ( a inv , t r a c e o f a 3x9 (x ) ) )
77 return VBF( f i e l d , fcn , use cach ing , ab=(n % 2 == 1) )
78

79

80 def quadrat ic CCZ inquiv to power2 ( f i e l d , a=1, use cach ing=True ) :
81 a s s e r t a != 0
82 a s s e r t n % 3 == 0
83 a inv = f i e l d . Inve r s e ( a )
84 a3 = f i e l d e x p (a , 3 , f i e l d )
85 a6 = f i e l d e x p (a , 6 , f i e l d )
86 t r a c e 3 o f a 3x9 p l u s a6x18 = lambda x : (
87 t r a c e ( f i e l d . Mult ip ly ( a3 , f i e l d e x p (x , 9 , f i e l d ) ) ˆ f i e l d . Mult ip ly ( a6 ,

f i e l d e x p (x , 18 , f i e l d ) ) ,
88 f i e l d , m=3) )
89 f cn = lambda x : f i e l d e x p (x , 3 , f i e l d ) ˆ f i e l d . Mult ip ly ( a inv ,

t r a c e 3 o f a 3x9 p l u s a6x18 (x ) )
90 return VBF( f i e l d , fcn , use cach ing , ab=(n % 2 == 1) )
91

92

93 def di l l ion APN permutat ion dim6 ( f i e l d , u s e cach ing=True ) :
94 a s s e r t f i e l d . n == 6
95 c powers = [25 , 30 , 32 , 37 , 23 , 39 , 44 , 4 , 18 , 46 , 51 , 52 , 18 , 56 , 53 , 30 ,

1 , 58 , 60 , 37 , 51 , 1 , 2 , 4 , 44 , 32 , 18 ,
96 1 , 9 , 17 , 51 , 17 , 18 , 0 , 16 , 13 ]
97 x powers = [57 , 56 , 50 , 49 , 48 , 43 , 42 , 41 , 40 , 36 , 35 , 34 , 33 , 32 , 29 ,

28 , 25 , 24 , 22 , 21 , 20 , 18 , 17 , 15 , 14 , 13 ,
98 12 , 11 , 10 , 8 , 7 , 6 , 5 , 4 , 3 , 1 ]
99

100 c = f i nd p r im i t i v e e l emen t ( f i e l d )
101 return VBF( f i e l d , lambda x : compute polynomial (x , c , x powers , c powers ,

f i e l d ) , use cach ing , apn=True , ab=False )

6.1.4 More general polynomials

Upon observation of the code above, one may notice that we use a method called

compute polynomial in the method called dillon APN permutation dim6 which refers to Dillon’s per-

mutation. The method compute polynomial is used to compute a 2-variable polynomial in general

and is done so by providing the input and coefficients by using a primitive element of F2n .

In short, compute polynomial can be used to compute the value of
∑

i∈I c
iyi for some index set

I ⊆ {0, . . . , 2n − 1}. If c ∈ F2n is primitive, then by definition, for all x ∈ F2n there exist some

i ∈ {0, . . . , 2n − 1} such that ci = x. For this reason, compute polynomial is particularly useful for

computing polynomials of
∑

i∈I c
ixi where c is primitive.
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Listing 6.5: Method to compute polynomials over F2n .

1 def compute polynomial (x , c , x powers , c powers , f i e l d ) :
2 ”””
3 Computes a polynomial g iven P(x ) = Sum[ c ˆ( a i ) xˆ( b i ) ]
4 where a i i s the i t h entry o f x powers and b i i s the i t h entry o f

c powers
5 : param x : The input to the polynomial
6 : param c : Used to d e f i n e c o e f f i c i e n t s o f the polynomial . I f p r imi t ive , cˆd

can be any element non−zero element
7 : param x powers : The powers o f x to eva luate , the i t h entry w i l l

correspond to the i t h power o f x
8 : param c powers : The powers o f c to eva luate , the i t h entry w i l l

correspond to the i t h power o f c
9 : param f i e l d : The f i e l d that x and c belong to

10 : r e turn :
11 ”””
12 r e s u l t = 0
13 for x power , c power in zip ( x powers , c powers ) :
14 r e s u l t ˆ= f i e l d . Mult ip ly ( f i e l d e x p (x , x power , f i e l d ) , f i e l d e x p ( c ,

c power , f i e l d ) )
15 return r e s u l t

6.2 Creating the graph of F

For a vectorial Boolean function F : Fn
2 → Fn

2 , we want to represent its graph as a set within

Fn
2 × Fn

2 . Recall that the graph of F is defined as GF = {(x, F (x)) : x ∈ Fn
2}. So, in order to

represent F , we can concatenate the binary strings of x and F (x), both of which are of length

n, to create a binary string of length 2n.

Example 6.2.1. Suppose F is the identity function F (x) = x, and suppose n = 2. Then

GF = {((0, 0), (0, 0)), ((0, 1), (0, 1)), ((1, 0), (1, 0)), ((1, 1), (1, 1))} .

We can simplify notation by writing vectors in Fn
2 as bitstrings, so GF is

GF = {0000, 0101, 1010, 1111} .

So, in order to concatenate we use a very simple method.

Listing 6.6: Method to concatenate two binary strings in Python.

1 def c on c a t ena t e b i n a r y s t r i n g s ( l e f t , r i ght , n ) :
2 ”””
3 S t i t c h e s the two binary s t r i n g s o f the g iven i n t e g e r s toge the r to c r e a t e a

new i n t e g e r .
4 Given two i n t e g e r s p1 and p2 , we return the po int (p1 , p2 ) .
5 : param l e f t : p1
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6 : param r i gh t : p2
7 : param n : The dimension o f the f i e l d which both p1 and p2 l i e in .
8 : r e turn : The newly cons t ructed po int which l i e s in dimension 2n .
9 ”””

10 return int ( f ”{ l e f t : 0{n}b}{ r i g h t : 0{n}b}” , 2)

Now, we are able to construct the graph of a vectorial Boolean function by using the con-

catenation of two binary strings. Furthermore, we also are able to construct TF by using an

additional method called translate set which simply adds a given point to all points to the given

set.

Listing 6.7: Constructing GF and TF in Python.

1

2 def bu i ld graph ( vbf ) :
3 ”””
4 Bui lds the graph o f the func t i on F : F {2ˆn} to F {2ˆn } .
5 The graph o f a func t i on F i s de f ined to be the s e t o f a l l ordered pa i r s (x

,F(x ) ) f o r a l l x in F {2ˆn } .
6 : param F: The func t i on .
7 : param n : The dimension o f the f i e l d F i s over
8 : r e turn :
9 ”””

10 n = vbf . f i e l d . n
11 t o r e tu rn = [ ]
12 for p in range ( int (2 ∗∗ n) ) :
13 t o r e tu rn . append ( c on c a t ena t e b i n a r y s t r i n g s (p , vbf . app ly func t i on (p) ,

n ) )
14 return t o r e tu rn
15

16 def g e t a l l g r a p h t r a n s l a t i o n s (F) :
17 n = F. f i e l d . n
18 graph = bui ld graph (F)
19 # return [ tup l e ( t r a n s l a t e s e t ( graph , t ) ) f o r t in range (0 , 2 ∗∗ (2 ∗ n) ) ]
20 return l i s t ( set ( [ tuple ( sorted ( t r a n s l a t e s e t ( graph , t ) ) ) for t in range (0 ,

2 ∗∗ (2 ∗ n) ) ] ) )

One may wonder why we first sort translations, convert them into tuples, then sets, and back

into a list. The reason for this is to prevent duplicate translations because when ∆F = 2n, there

exist (a, b), (c, d) ∈ (Fn
2 )

2 such that τa,b(GF ) = τc,d(GF ) (see Lemma 4.3.3).

6.3 Representing the Kneser graph of all translations

In this section, we consider computing the Kneser graph of all translations of GF where F : Fn
2 →

Fn
2 is a vectorial Boolean function. In order to construct the graph, we use the networkx package



6.4. COMPUTING THE EXCLUDE DISTRIBUTION OF A SIDON SET 87

in Python (see [40]). Since we have already defined the get all translations method, creating the

Kneser graph of TF is straightforward.

Listing 6.8: Generating the Kneser graph of TF .
1 import networkx as nx
2

3 def kneser graph ( s e t s ) :
4 G = nx . Graph ( )
5 # Add nodes to the graph
6 G. add nodes from ( s e t s )
7

8 # Add edges to the graph f o r d i s j o i n t k−subse t s
9 for i , subset1 in enumerate( s e t s ) :

10 for subset2 in s e t s [ i + 1 : ] :
11 # i f subset1 != subset2 :
12 i f not any( item in subset2 for item in subset1 ) :
13 G. add edge ( subset1 , subset2 )
14 return G
15

16 KGTF = kneser graph ( a l l t r a n s l a t i o n s )

6.4 Computing the exclude distribution of a Sidon set

Now, we consider the exclude distribution of a Sidon set S ⊆ Fn
2 . The exclude distribution

contains information about how many points in Fn
2 \S have exclude multiplicity k as the number

of such points is equal to |d−1
S ({k})|. However, computing the exclude multiplicities of all points

in Fn
2 \ S is computationally expensive. Regarding runtime, assigning each point its exclude

multiplicity is O(
(|S|

3

)
) = O(|S|3).

When S is the graph of an APN function F : Fn
2 → Fn

2 , then it is possible to compute the

exclude multiplicity of a single point in (Fn
2 )

2 \ GF . This is because Corollary 5.3.3 states that

any point (a, b) ∈ (Fn
2 )

2 \ GF has exclude multiplicity

1

3 · 22n+1

∑
(u,v)∈(Fn

2 )
2

(−1)v·b+u·aW 3
F (u, v).

Therefore, in case S = GF for an APN function F , we are able to compute the exclude multiplicity

of a single point in (Fn
2 )

2\GF . However, the obvious algorithm still has O(23n) runtime. It would

be interesting to find a faster algorithm for computing the exclude multiplicity of a single point

in the complement of GF .
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Since computing the exclude multiplicities of all points in Fn
2 \S is computationally expensive,

we provide code written in C rather than Python. This allows us to compute the distribution

of exclude multiplicities distribution significantly faster. We provide our code now.

Listing 6.9: Computing the exclude distribution of a given Sidon set in C.

1 #inc lude <s t d i o . h>
2 #inc lude <s t d l i b . h>
3

4 int max( int ar r [ ] , int s i z e )
5 {
6 int max = arr [ 0 ] ;
7 for ( int i = 1 ; i < s i z e ; i++)
8 {
9 i f ( a r r [ i ] > max)

10 {
11 max = arr [ i ] ;
12 }
13 }
14 return max;
15 }
16

17 int main ( )
18 {
19 // INPUT
20 int dim ;
21 p r i n t f ( ”Enter the dimension o f the s e t : ” ) ;
22 s can f ( ”%d” , &dim) ;
23 int spaceS i z e = 1 << dim ; // 2ˆd
24

25 int s i z eO fSe t ;
26 p r i n t f ( ”Enter the s i z e o f the s e t : ” ) ;
27 s can f ( ”%d” , &s i z eOfSe t ) ;
28

29 int ∗ s idonSet = ( int ∗) mal loc ( s i z eO fSe t ∗ s i z e o f ( int ) ) ;
30 p r i n t f ( ”Enter %d va lues f o r s e t :\n” , s i z eO fSe t ) ;
31 for ( int i = 0 ; i < s i z eO fSe t ; ++i )
32 {
33 s can f ( ”%d” , &s idonSet [ i ] ) ;
34 }
35

36 p r i n t f ( ”Sidon s e t :\n” ) ;
37 for ( int i = 0 ; i < s i z eO fSe t ; i++)
38 {
39 p r i n t f ( ”%d ” , s idonSet [ i ] ) ;
40 }
41 p r i n t f ( ”\n” ) ;
42

43 p r i n t f ( ”Values s to r ed \n” ) ;
44

45 // Table :
46 // Key = Point in \F 2ˆ{2n} , Value = Exclude Mu l t i p l i c i t y
47 int ∗ e x c l u d eMu l t i p l i c t i e s = ( int ∗) mal loc ( spaceS i z e ∗ s i z e o f ( int ) ) ;
48

49 for ( int i = 0 ; i < s i z eO fSe t ; i++)
50 {
51 for ( int j = i + 1 ; j < s i z eO fSe t ; j++)
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52 {
53 for ( int k = j + 1 ; k < s i z eO fSe t ; k++)
54 {
55 e x c l u d eMu l t i p l i c t i e s [ s idonSet [ i ] ˆ s idonSet [ j ] ˆ s idonSet [ k

] ]++;
56 }
57 }
58 }
59

60 f r e e ( s idonSet ) ;
61

62 int maxExcludeMult = max( e x c l ud eMu l t i p l i c t i e s , spaceS i z e ) ;
63 p r i n t f ( ”\nExclude D i s t r i bu t i on :\n” ) ;
64 p r i n t f ( ”Mult\ t \ tFreq\n” ) ;
65 for ( int mult = 0 ; mult <= maxExcludeMult ; mult++)
66 {
67 int count = (mult == 0) ? −s i z eO fSe t : 0 ;
68 for ( int point = 0 ; po int < spaceS i z e ; po int++)
69 {
70 i f ( e x c l u d eMu l t i p l i c t i e s [ po int ] == mult )
71 {
72 count++;
73 }
74 }
75 i f ( count > 0)
76 {
77 p r i n t f ( ”%d\ t \ t%d\n” , mult , count ) ;
78 }
79 }
80 f r e e ( e x c l u d eMu l t i p l i c t i e s ) ;
81 return 0 ;
82 }
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